[Calcul explicite de l'entropie topologique séquentielle; le cas unimodal]
Nous considérons la famille de fonctions continues de l’intervalle sur lui–même, telles que (1) ; (2) elles sont constituées de deux morceaux monotones; et (3) elles ont des points périodiques de périodes toutes les puissances de exactement. L’objectif principal de ce travail est de calculer explicitement l’entropie topologique séquentielle de tout élément de par rapport à la suite .
Let denote the family of continuous maps from an interval into itself such that (1) ; (2) they consist of two monotone pieces; and (3) they have periodic points of periods exactly all powers of . The main aim of this paper is to compute explicitly the topological sequence entropy of any map respect to the sequence .
Keywords: map of type $2^\infty $, topological sequence entropy, unimodal map
Mot clés : fonction de type $2^\infty $, entropie séquentielle topologique, fonction unimodale
Jiménez López, Victor 1 ; Cánovas Peña, Jose Salvador 2
@article{AIF_2002__52_4_1093_0, author = {Jim\'enez L\'opez, Victor and C\'anovas Pe\~na, Jose Salvador}, title = {Computing explicitly topological sequence entropy: the unimodal case}, journal = {Annales de l'Institut Fourier}, pages = {1093--1133}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {4}, year = {2002}, doi = {10.5802/aif.1913}, zbl = {1083.37012}, mrnumber = {1926675}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1913/} }
TY - JOUR AU - Jiménez López, Victor AU - Cánovas Peña, Jose Salvador TI - Computing explicitly topological sequence entropy: the unimodal case JO - Annales de l'Institut Fourier PY - 2002 SP - 1093 EP - 1133 VL - 52 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1913/ DO - 10.5802/aif.1913 LA - en ID - AIF_2002__52_4_1093_0 ER -
%0 Journal Article %A Jiménez López, Victor %A Cánovas Peña, Jose Salvador %T Computing explicitly topological sequence entropy: the unimodal case %J Annales de l'Institut Fourier %D 2002 %P 1093-1133 %V 52 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1913/ %R 10.5802/aif.1913 %G en %F AIF_2002__52_4_1093_0
Jiménez López, Victor; Cánovas Peña, Jose Salvador. Computing explicitly topological sequence entropy: the unimodal case. Annales de l'Institut Fourier, Tome 52 (2002) no. 4, pp. 1093-1133. doi : 10.5802/aif.1913. https://aif.centre-mersenne.org/articles/10.5802/aif.1913/
[1] Topological entropy, Trans. Amer. Math. Soc., Volume 114 (1965), pp. 309-319 | DOI | MR | Zbl
[2] Commutativity and non-commutativity of topological sequence entropy, Ann. Inst. Fourier, Volume 49 (1999) no. 5, pp. 1693-1709 | DOI | Numdam | MR | Zbl
[3] The measure of scrambled sets: a survey, Acta Univ. Mathaei Belii Nat. Sci., Ser. Math., Volume 7 (1999), pp. 3-11 | MR | Zbl
[4] The periodic points of maps of the circle and the interval, Topology, Volume 15 (1976), pp. 337-342 | DOI | MR | Zbl
[5] An algorithm to compute the topological entropy of a unimodal map, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 9 (1999), pp. 1881-1882 | DOI | MR | Zbl
[6] On topological sequence entropy of piecewise monotonic mappings, Bull. Austral. Math. Soc., Volume 62 (2000), pp. 21-28 | DOI | MR | Zbl
[7] Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., Volume 112 (1991), pp. 1083-1086 | MR | Zbl
[8] Topological sequence entropy, Proc. London Math. Soc., Volume 29 (1974), pp. 331-350 | DOI | MR | Zbl
[9] Topological dynamics, American Mathematical Society, Providence, 1955 | MR | Zbl
[10] Topological sequence entropy for maps of the interval, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 2045-2052 | DOI | MR | Zbl
[11] Large chaos in smooth functions of zero topological entropy, Bull. Austral. Math. Soc., Volume 46 (1992), pp. 271-285 | DOI | MR | Zbl
[12] An explicit description of all scrambled sets of weakly unimodal functions of type , Real. Anal. Exchange, Volume 21 (1995/1996), pp. 664-688 | MR | Zbl
[13] There are no piecewise linear maps of type , Trans. Amer. Math. Soc., Volume 349 (1997), pp. 1377-1387 | DOI | MR | Zbl
[14] Two-point scrambled set implies chaos, ECIT 87 (Caldes de Malavella, Spain, 1987) (Proceedings of the European Conference on Iteration Theory) (1989), pp. 427-430
[15] Investigation of some properties of a continuous pointwise mapping of an interval onto itself, having an application in the theory of nonlinear oscilations, Prikl. Mat. i Mekh (Russian), Volume 17 (1953), pp. 351-360 | MR
[16] Period three implies chaos, Amer. Math. Monthly, Volume 82 (1975), pp. 985-992 | DOI | MR | Zbl
[17] Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math., Volume 168 (1992), pp. 271-318 | MR | Zbl
[18] Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 2863-2870 | DOI | MR | Zbl
[19] On iterated maps of the interval, Dynamical systems (College Park, MD, 1986/1987) (Lecture Notes in Math.), Volume 1342 (1988), pp. 465-563 | Zbl
[20] Horseshoes for mappings of an interval, Bull. Acad. Pol. Sci., Sér. Sci. Math., Volume 27 (1979), pp. 167-169 | MR | Zbl
[21] Smooth chaotic functions with zero topological entropy, Ergodic Theory Dynam. Systems, Volume 8 (1988), pp. 421-424 | DOI | MR | Zbl
[22] Entropy of piecewise monotone mappings, Studia Math., Volume 67 (1980), pp. 45-63 | MR | Zbl
[23] On the computation of topological entropy (1971) (Ph. D. Thesis, CUNY)
[24] Coexistence of cycles of a continuous map of the line into itself, Ukrain. Mat. Ž, Volume 16 (1964), pp. 61-71 | MR
[24] Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (English transl.), Volume 5 (1995), pp. 1263-1273 | DOI | MR | Zbl
[25] Dynamics of one-dimensional maps, Kluwer, Dordrecht, 1997
[26] An introduction to ergodic theory, Springer-Verlag, New York-Berlin, 1982 | MR | Zbl
Cité par Sources :