
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Victor JIMÉNEZ LÓPEZ & Jose Salvador CÁNOVAS PEÑA

Computing explicitly topological sequence entropy: the unimodal case
Tome 52, no 4 (2002), p. 1093-1133.

<http://aif.cedram.org/item?id=AIF_2002__52_4_1093_0>

© Association des Annales de l’institut Fourier, 2002, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2002__52_4_1093_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


1093

COMPUTING EXPLICITLY

TOPOLOGICAL SEQUENCE ENTROPY:
THE UNIMODAL CASE

by V. JIMÉNEZ LÓPEZ and J.S. CÁNOVAS PENA

Ann. Inst. Fourier, Grenoble
52, 4 (2002), 1093-1133

1. Introduction and statement of the results.

There are many tools to deal with the idea of "complex dynamical
behaviour" for the family C(I) of continuous maps on a compact interval I.
Among them topological entropy enjoys a steady popularity, one of the
reasons being that it can be used as an indicator of the "size" of this

dynamical complexity which, contrary to measure-theoretic approaches, is
preserved under topological conjugacy.

DEFINITION 1.1 (see [1], [8]). - Let (X, d) be a compact metric space,
let f : X - X be continuous and let A = denote a (non necessarily
strictly, but unbounded) increasing sequence of positive integers.

Let Y C X and set E &#x3E; 0. We say that a set E C Y is (A, m, E, Y, f)-
separated (by f ) if for any x, y E E, x =I y, there exists i G {1,2,..., m} such
that &#x3E; E. Denote by Y, f ) the biggest cardinality
of any (A, m, E, Y, f ) -separated set in Y and write

This paper has been partially supported by the DGICYT grant P95-1004, the DGISEC
grant PB98-0374-C03-01 and the Fundacion Seneca (Comunidad Autonoma de Murcia)
grant PB/2/FS/97.
Keywords : Map of type 200 - Topological sequence entropy - Unimodal map.
Math. classification : 37B40 - 26A18 - 54H20.
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The topological sequence entropy of f on the set Y (respect to the

sequence A) is defined by

Finally we defines the topological sequence entropy of f (respect to the
sequence A) as

If A = then we get the standard topological entropy h( f ).

In this regard, the interest of having means to calculate (or at least to
approximate) topological entropy in a useful way becomes obvious. In the
setting of piecewise monotone maps such a mean is (sometimes) provided
by symbolic dynamics, as follows from classical papers by Milnor and
Thurston [19] and Misiurewicz and Szlenk [22] (cf. also the previous but
little known work by Rothschild [23]).

It is interesting to recall the substance of the above results in the

simpler case of unimodal maps, that is, maps from C(I), I = [a, b], satisfying
f (a) = {~ bl and for which there is a point c C (a, b) such that the
restrictions of f to [a, c] and [c, b] are strictly monotone.

With the notation above, associate to any point x E I its itinerary
defined by

and then the sequence t given by

It can be proved that the map x - is monotone (when {20131,0,1}~ is
ordered with the lexicographic order) and then that the limit

(when {20131,0,1}~ is endowed with the topology of pointwise convergence)
exists for any x E (a, b]. In particular let us consider
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The formal power series

(or sometimes the sequence itself) is called the kneading invariant
of f and, when t is seen as a real variable, it converges for all It I  1.

Let r(f) be the smallest zero of v f in (o,1 ) or, if no such a number exists,
let r(f) = 1.

THEOREM 1.2 (see be unimodal. Then

While dynamical complexity is certainly guaranteed for positive
entropy maps, entropy zero maps need not be that "simple" : for instance
some of them are chaotic (in the sense of Li and Yorke) [16], [14]. Recall
that a map f E C(I) is said to be chaotic in this sense if it possesses two
points x, y satisfying simultaneously

A natural and more accurate lens to look at these maps is topological
sequence entropy, which is emphasized by the following result by Franzova
and Smftal:

THEOREM 1.3 (see [7]). - Let f E C(I). Then it is chaotic if and
only if its topological sequence entropy hA(f) is positive respect to some
appropriate increasing sequence A.

In this context we must concentrate our attention on maps of type 2°°,
since they are the only entropy zero maps which are apt to enclose chaos
[24], [15] (cf. also [25], pp. 73-74), [4], [20]. Recall here that p is a periodic
point for f if there is some (minimal) 1 (which is called

the period of p) satisfying f ~ (p) - p, and that f is said to be of type 2°
if it has periodic points of periods exactly all powers of 2. Here the use of
the sequence D = (2"2-1)°°=1 suggests itself. For instance the following was
conjectured in [7] (and later disproved in [10]):

(1) Let f E 0(1). Then it is chaotic if and only if hD ( f ) &#x3E; 0 .
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The main aim of this paper is to calculate explicitly topological
sequence entropy respect to the sequence D for unimodal maps of type 200.
Let us emphasize that if f C C(I) has positive topological entropy then
hD ( f ) = oo by [8], while if h( f ) = 0 but f is not of type 2° then it cannot
be chaotic so hD ( f ) = 0 by Theorem 1.3.

In fact we will work in the slightly larger setting of weakly unimodal
maps. Let I = [a, b]. A (non-constant) map f E C(I) will be called weakly
unimodal if f (a) = f (b) E and there is c E (o, 1) such that the
restrictions of f to [a, c] and [c, b] are (non necessarily strictly) monotone;
hence, although f is not constant, it is allowed to have some constant

pieces. We emphasize that the restriction f (a) = f (b) E {a, 6} is just
cosmetic and could be easily removed. The (possibly degenerate) compact
interval containing all absolute extrema of f will be called its turning
interval. The family of weakly unimodal maps of type 2° will be denoted
by W(I). While in the multimodal case new and non-negligible technical
difficulties arise, we do not expect essential differences to happen; we hope
to deal with this general case in a future paper.

The problem here is that, contrary to the usual topological entropy
case, standard symbolic dynamics seems now to be useless as they do not
clearly emphasize the specific features of type 2° maps. Instead we will use
an alternative approach introduced in [12], an extension of the well known
idea of the "adding machine" [9] (although here it makes more sense to
speak about a "substracting" machine), the essential of which we presently
recall (see also Section 2). Let us emphasize that the reader can find
(sometimes implicit) proofs of all non-trivial results on maps from W(I)
stated below (except of course those concerning sequence entropy) in [12].

As it is well known, weakly unimodal maps of type 2° are infinitely
renormalizable, which means that there is a sequence Ii D 12 D 13 D ...
of compact intervals, all containing the turning interval of f, such that, for
any m &#x3E; 1, f 2m (1m) C 1m and its restriction belongs to W(Im) (we
will assume that the intervals 1m are minimal with this property). Moreover
they possess solenoidal structure, that is, the intervals f i (h.,-L) have pairwise
disjoint interiors, i = 0, 1,..., 2m - 1, and if we write

then for any x E I one of the following alternatives must occur: (a) x
is asymptotically periodic, that is, there is a periodic point p such that
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= 0; (b) the orbit of x eventually falls
into for any m &#x3E; 1 and then its w-limit set (the set of limit points of
its orbit) is infinite and included in the solenoid

Next let us associate to any point r e S( f) the sequence

having for any m the property that al + 2a2 + ... + 2m-lam is the first
number k satisfying E Im. It turns out that this sequence is well

defined, the map x H is surjective and for any a E {0,1}(X) the
set Ka ( f ) of points x satisfying a f (x) - a is a (possibly degenerate)
compact interval. For instance, observe that Ko ( f ) includes (but not
necessarily coincides with) the turning interval of f, 0 = (0,0,..., 0, ... ) . *
Moreover, define a subinterval of I to be essential ( for f) if it is a non-

degenerate interval of the type for which the sequence a contains an

infinite number of zeros. We have

THEOREM 1.4 (see [12]). - Let f E W(I). Then it is chaotic if and
only if it possesses an essential interval.

Since chaos and positive topological sequence entropy are so closely
related, it is reasonable to expect the number hD(f) to depend on the
nature of the set C {0,1}(X) of sequences a for which is

non-degenerate. As we will immediately see, this is the case indeed.

Remark 1.5. - Essential intervals can be described in a somewhat

simpler way. Recall that a wandering interval of f is an interval whose

iterates are pairwise disjoint and which does not have any asymptotically
periodic points. If the union set of all w-limit sets of f is denoted by w(f)
then it can be proved that J C I is an essential interval of f E W(I) if and
only if it is a wandering interval whose both endpoints are in w(f). Notice
that the role of unimodality is not apparent here. In fact if a map f E C(I)
of type 2°° is chaotic then it must possess a wandering interval (see e.g. [3]);
we conjecture that a map f E C(I) of type 2°° is chaotic if and only if it

possesses a wandering interval whose both endpoints are in w(f).
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To clarify the situation we need to introduce for any a E 
a kind of "symbolic entropy" which, essentially, inform us about the
proportion of zeros in cx and how early they appear. Below, Card T denotes
the cardinality of a set T.

DEFINITION 1.6. - Let a - E fO,11’. For any m let
S(a, m) be the family of subsets S 2,..., having for any 1  i  m
the property that Card(s n ~1, 2,..., il) is at most the number of zeros

of the sequence (0~1,... ai). Then the entropy h~ of the sequence a is
defined by

For instance observe that if a = (1,1,1,0,1,0,1,1,1,0,1,...) then
S(a, 11) includes all subsets from {I, 2,..., II} simultaneously containing
no points from (1, 2,3}, at most one point from f 1, 2,..., ,5}, at most two
points from f 1, 2,..., ,9} and at most three points from {I, 2, ... , 111.

We are now ready to state the first main result of the paper:

In the statement of Theorem A we implicitly assume N( f ) ~ 0 ; recall
that = 0 then hD ( f ) = 0 by Theorems 1.3 and 1.4.

Notice that 2’~’2 for any a. This implies that if

f E W (I ) then hD ( f )  log 2 (more generally, in [6] has been recently
proved that hA ( f )  log 2 for any sequence A and any piecewise monotone
map f E C(I)), which is similar to the well known fact that h( f )  log 2
for any unimodal map. Observe also that Card s(0, nz) = 2’~’2, so:

COROLLARY A.1. - If f E W(I) has a non-degenerate turning interval
then hD ( f ) = log 2.

Admittedly it may be uncomfortable to compute ha for an infinite
number of sequences a ; moreover though countable, is usually an
infinite set. In a sense this cannot be helped, as for any countable subset
A c there is a map fA E W(I) such that A C N(fA)’ On the
other hand there are fortunately many sequences having the same entropy.
For instance, if we define in the pseudometric
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(where denotes the arithmetic mean of the numbers

XI X2,... , then Â(0152, (3) = 0 implies hex = hj3, see Corollary B.1 below
(incidentally, the map fA above may be constructed having no constant
pieces and so that for any a E there is (3 E A such that A (a, (3) == 0 ;
hence supaEA hex). In particular, if f E W(I) and A(a, (3) = 0
for any E then hD(f) = ha for any cx E 

Generally speaking, maps fA above need not be (even piecewise)
differentiable. At this point one may be tempted to wonder whether
computing sequence entropy via Theorem A makes any serious sense,

specially taking into account that for many "natural" maps from W(I)
(including all analytic ones) wandering intervals cannot exist [17] and then
their sequence entropies are automatically zero. Moreover, as far as (at
least) one significant class of maps is concerned (those consisting of a finite
number of non-constant affine pieces), maps of type 2° cannot even exist,
see [13], [18]. It is important then to stress that

is still a very "natural" map belonging to W( ~0,1~ ) [21] for which

hD ( f ) = log 2 by Corollary A.1. Let us also remark that combining some
results from [12] and [17] it can be proved that if f E W (I ) consists of a
finite number of "smooth" (possibly constant) pieces (the word "smooth"
is used here in the same sense as in [17], p. 277) then for any a E .lU( f )
there is fl E N( f ) such that (3) = 0 and f is constant on K,~ ( f ) . Hence
we can compute hD ( f ) just evaluating a finite number of entropies h,~ .

Let us return now to the general continuous case. According to
Theorem A the computation of hD depends on that of the corresponding
entropies ha : our next result explains how to do it. Before stating it we
must introduce some necessary notation.

For any m &#x3E; 1 let us define inductively the maps II~"2 ~ R’

as follows. We begin by writing F, (x) - x for any x. Next assume that
the maps Fi have been already defined for any 1  i  m and define

where r is the (maximal) number I  k  m at which mean(xl, ~2,.....r~)
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attains its minimum value. For instance

Next let g : ~0,1~ -~ R be defined by

(we emphasize that g is continuous, concave and increasing), and write

Now we have

THEOREM B. - Let , Then

Theorem B has a number of useful, relatively straightforward (but
non-trivial) consequences which allows us to approximate or compute
easily ha in many cases. We listed them below:

COROLLARY B.1. Let E &#x3E; 0 and let 6e be such 

implies I g (x) - g(y)1 :S E for any x, y E [0, 1 ]. Then A (a, 0) :S 8E implies
In particular, if 1 (a, 0) = 0

then ha = h,.

COROLLARY B.2. - Let i ’ and assume that

exists. Then
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Let be the only positive solution of the equation

Then

moreover, both inequalities are sharp.

Regarding the last corollary, (4) means of course just ha - 0 in
the case A = 0. It is easy to check that K(A) &#x3E; A for any A (hence

In particular Corollary B.3 implies ha = log 2 when
lim mean(l - aI, 1 - a2, ... , 1 - a’-,-L) = 1, thus improving the

corresponding result from Corollary B.2.

Remark 1.7. - As it is well known, the set of sequences converging
to 2 has full measure in ~0,1~°° (when it is endowed with the usual product
measure) so, in this sense, ha = log 2 for almost all sequences a.

Remark 1.8. - Curiously enough, if (X, Ð, j-l) is a probability space
and 9 = is a partition of (X,Ð,j-l) with corresponding measures

= À, p(Pi) = 1 - A, A  2 , then the so-called entropy H(T) of
the partition T is defined to be precisely the number g(A) (see e.g. [26],
pp. 77-80).

Theorems 1.2 and A+B are worth comparing. Although the first

one is of course "visually" much simpler, computing the zeros of the
kneading invariant of f may be rather a difficult task (compare e.g. with
Corollary B.2). It is true, however, that one can use well known continuity
and monotonicity tools to compute approximately standard topological
entropy in a very efficient way (cf. e.g. [5] and the references therein), tools
which unfortunately are not available here. For instance we can modify
slightly the construction in [11] to find a C~ map f having a non-

degenerate turning interval and then satisfying hD ( f ) = log 2 (resp. having
no wandering intervals and then satisfying hD(f) - 0) and C~ maps
g E W(I) arbitrary close to f (in any fixed C~-topology, 0  ~  oo)
having no wandering intervals (resp. having a non-degenerate turning
interval). Hence hD is not continuous in any reasonable sense. Regarding
symbolic entropy things are much better, as Corollary B.1 emphasizes.
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As we said before, if a is fixed then there is a map f E W(I) such
that hD ( f ) = ha. In particular, if cx is chosen to have an infinite number
of zeros but satisfying A (a, 1) = 0, 1 = (1,1, ... ,1, ...), then hD( f ) = 0 by
Corollary B.1 but it is chaotic because it has an essential interval. Hence
Franzova and Smftal’s conjecture (1) fails even in the setting of unimodal
maps (Hric’s counterexample [10] consists of infinitely many monotone
pieces).

The contents of this paper can be briefly summarized as follows.
In Section 2 the above-mentioned symbolic dynamics for maps from

W(I) are described in more detail. Section 3 takes into account the

specific properties of the sequence D and develops some necessary technical
tools which are used to prove Theorem A. After some preparatory work
in Section 4, Theorem B and its corollaries are proved in Section 5.

We emphasize that D will denote the sequence (2’n-1 )°°-1 throughout the
paper. As usual we write N, Z-, Z and R to describe the sets of positive
integers, negative integers, integers and real numbers, respectively. Cl T will
denote the closure of the set T and will be the length of the interval J;
[x] will denote the integer part of the real number x.

2. Symbolic dynamics for maps from W(I).

If Z is a set then, as usual, (resp. Z°) will denote the set

of finite sequences of length m (resp. infinite sequences) of elements

from Z. If 0 E or a E Z° then we will often describe them through
their components as (01, ... , or respectively. Also, if c~ E 
with m E N1 and n E N with n  m (of course we mean n  oo for

any n) then the sequence E Z~ is defined by

We remark that in the case m = 1 we will indistinctly use the notations

(9 = (?i) = (9i = ji. If 9 e Z and a E Z’ with m E N and n E N 
then 9 * a E Z,+n (where m + oo means oo) will denote the sequence

(3 defined by Oln ai-m for any i &#x3E; m. The shift map
cr: Zoo ---+ Z° is defined by o7((ai)?o 1) _ For the sake of notation,
if 13 is a sequence then we will use sometimes the "empty sequence" 010
when, e.g., * a is j ust the sequence a.

Let f E W(I), I = [a, b], and let AP(f) be the set of asymptotically
periodic points of f. In [12] was showed that it is possible to construct a
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family (or just there is no ambiguity on f ) of
pairwise disjoint (possibly degenerate) compact subintervals of [0, 1] such
that K, = I B AP(I) and satisfying the key properties (P1)-(P4)
listed below. Recall that we denote

(PI) Interval Ko contains all absolute maxima of f in the case f (a) -
f (b) = a, and all absolute minima of f in the case f (a) = f (b) = b.

(P2) Define in Z° the following total ordering: if a, ,~3 E Zoo, a # ~3
and k is the first integer such that (3k, then a  ,~3
if either i  0} is even and ak  (3k or

Card{l  i  k : ai  01 is odd and (3k  ak. Then a if

and only if Ka  K, (that is, x  y for all x E Ka, y E I~,~) in
the case f (a) - f (b) = a, and a if and only if K,  I~a in the
case f (a) = f (b) = b.

(P3) Let a E Zoo, a # 0, and let k be the first integer such that 0.

for i &#x3E; k. Then = K, . Also, we have f(Ko) C Kl .

(P4) For any m and any a E let (or j ust be the smallest

interval including all intervals K(3, (3 e Zoo, such that aim - (3lm.
Then Ka 

Now, for any fixed m it can be easily checked that the intervals Ko,
9 E are open and pairwise disjoint, and (after replacing oo by m,
0 by and 1 by 11m) they also satisfy (P1)-(P3). For instance we
have K(0,3,1,-1,7,O)  K(o,3,1,-1,7,1) and K(0,3,1,-1,0,1)  K(0,3,1,-1,0,0) in

the case f (a) - f(b) = a, while f (K(7,o,o,i,2,o)) - K(-6,0,0,1,2,O) and

In general, notice that if f maps Ko into K,~,
B, ~9 E then

(except in the 01,,, d = This is the reason why we used
the expression "substracting machine" in the Introduction. We emphasize
that Cl Ko I m are the intervals Im we mentioned there. In fact, it is easy to
verify that
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Thus, if x E Ka, a c ~0,1 } °° , we have that is the first

number k satisfying E 1m, just as we stated then.

We finish this section by listing a number of additional properties
of the above sets we will need later. They can be rutinarily obtained
from (P2), (P3) and/or (P4).

(P5) Ka is a wandering interval for any a E 

(P6) Let 9 E (0, l l’~~ , rn e N. Then f2m (Ko) C Ke . Moreover, if K = Cl Ko
and g = then g E W(K). Further, Ka(g) = for any

(P7) Let 8 E m e N, define {J E by = and

- 1 - 6m and put Ke = Ke ( f ) = K. Then 2m-l () C .Jm - 1 - Om and put 0 Ko (f - Kf). Then f Ko C 0

(P8) Let x E Ko for some B E (0, ll’. If i &#x3E; m, R &#x3E; 0 and f2’(X) E 
for some p E Z, then we have p E Z- U ~0,1 } .

3. Proof of Theorem A.

Before speaking about Theorem A and its proof let us recall two facts
concerning sequence entropy respect to an arbitrary sequence A. The first
one was proved in [2].

LEMMA 3.1. - Let (X, d) be a compact metric space and let

f : X ---+ X be a continuous map. Let Y c X and c &#x3E; 0. Then

for and any sequence A. In particular hA ( f ) = hak(A) (f) for
any k and any sequence A.

LEMMA 3.2. - Let f E W(I) and c &#x3E; 0. Then for and any

sequence A there such that

Proof - Say A = and fix 1~. As the first inequality is trivial,
and we can prove
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reasoning as in Theorem 7.5 from [26], it suffices to show that

Indeed, let J be the smallest interval including f2k (Ko(f)) U fk (Ko(f)) and
T = f i (J). By (Pl), (P3) and (P6) we have f (J) == J (so f (T) = T)
and C J C Then, in particular, we could just prove

To do this, let Us = ~x E I : (X) V T} for any m &#x3E; 0 (we mean ao = 0)
and write = Us for any m &#x3E; 1. Since f (T ) = T, we can use [6],
Lemma 2.3, where it is implicitly proved that

with so (A, E, Ti, f ) = 1. Then we take A
to get

into account

Now, because C J and then we get that
if x E Um then it is asymptotically periodic, and we can repeat the
proof of Lemma 2.4 from [6] to prove

This and (6) imply (5). D

Let us concentrate now on the sequence D. Let f E W(I). On sight
of Lemmas 3.1 and 3.2, in order to compute hD ( f ) we must be able to
calculate, for any given E &#x3E; 0 and an appropriate number k, the numbers

= s(D, E, Ke( f ), f 2k ) for every 9 E In fact

we have (see [2])



1106

LEMMA 3.3. - Let f E W(I) and E &#x3E; 0. Let

Then there is a number 1~E such that, for k,, the following
statements hold:

(i) if a E and and Ka ( f ) denote the left and right-side
components of K. (f K,, (f ) then (f ) 1, (f) 1  E;components Ka(f) then alk Cilk(f)l  E;

(ii) and (9 all for any a E then (  E.

This means that we can save some work if we take the number k = 1~E
from Lemma 3.3, since if 0 for any a E then  E by (ii)
and hence = 0.

These calculations will be done in the key Proposition 3.15, after which
Theorem A follows almost immediately. Until the end of its proof, f E W(I),
E &#x3E; 0 and cx E NE( f ) will remain fixed, and we will write K = Kalkt: (f),
g = f 2kE and fl = okE (a): with this notation, Proposition 3.15 will show
that s (D, E, K, g) - h,. Since g E W(K) (we should say more precisely
g|cl x E W(Cl K), cf. (P6), but hopefully this will not cause any confusion)
we will keep the conventions in Section 2 and write Ke instead of 
whenever 9 E rn e N U {oo}. The left and right-side components
of K B K,~ will be respectively denoted by KL and KR; we will assume
without loss of generality that

(7) has an even number of zeros,

that is (cf. (P2)), that all intervals Kt, t  -1 (resp. t &#x3E; 1), are on the left
(resp. right) of K,. Recall that AP(g) is the set of asymptotically periodic
points of g.

As the proof of Proposition 3.15 is complicated, we have divided it in
several stages (Lemmas 3.4, 3.6, 3.10 and 3.14). To begin with, we return
to more or less conventional symbolic dynamics and proceed as follows. Let

Thus, T consists of the non-asymptotically periodic points of g which never
visit K,~ under the action of the 2"2-1-iterates of g; for instance, with this
definition, K, C T because it is a wandering interval by (P5).
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In what follows, and beginning with v(x) below, we are going to
introduce some notations for any x E T; except when it could lead to

confusion, we will not refer to x when using them.

Associate to each point x E T a code

defined by L or R according to

Then

LEMMA 3.4. With the above notation,

Proof. As E, we obviously have K, g) &#x3E; Card T(m)
so

is trivial. To prove the converse inequality fix m, let

and put we have

For any 0  i  m, let Ei C Ti be a maximal (D, 6, Ti, g)-separated set. If
x is given then there is a point y = y(x) E T such that C I~L

(resp. g22 1 (x) E KR) then g22 1 (y) E (resp. g22 1 (y) E K R ) as well,
1  i  m. (For instance, if x E AP(g) and J is the connected component
of AP(g) containing it, then J is closed by (P2) and (P4). Moreover, notice
that neither of the iterates of J meets KI,3. Now the existence of the
point g follows from the uniform continuity of g and the fact that, by (P2)
and (P3), there are points of T as close to J as required.) In particular,
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this means that if x =1= x’ are in Eo then
Lemma 3.3 (i)); hence,

(use also

Fix now 1  i  m and let ~ E We claim that the set of points x E Ei
such that v (y (x)) -- ~ has cardinality at most + 1. In fact, if x, x’
are two such points then g2’ 1 (x) and g2’ 1 (x’) are on the same side of K j3
for any j = 1,2, ... , m, j =I i (notice that, since Kj3 is a wandering interval,
g2’ 1 (x), g2j-1 1 (x’) ~ for i). Use now that Ei is a separated set
and Lemma 3.3 (i) to conclude Ig22 1 (x) - g22 1 (x’) I &#x3E; E. From this, the
claim easily follows. Thus,

which together with (9) and (8) imply

The lemma follows.

Next we define the sets

We emphasize that, because of (P6),

We will denote

Also, for any x C T and any m, let dm - &#x3E; 0 be such that

(we mean = K). The following simple
... .. -

fact will be very useful later.

LEMMA 3.5. If x E Us then di  i for any 1  i  m.

Proof. Assume dj &#x3E; j for some 1  j  m. Then

by (P7) and we arrive to a contradiction with (10).
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Moreover

LEMMA 3.6. - With the above notation,

Proof. The inequality

is trivial. Conversely, fix m and let x E T. If x ~ U1 then g2 (x) E K£
and in general ~’B~) e 31 for any i &#x3E; 2 (cf. (P6)). Hence either

= (C, L, ... , L) or v(x)lm = (C, R, ... , R), where "C" denotes

indistinctly "L" or "R". More precisely, if (31 = 1 then C - L

(when = {L}) while if 13, = 0 then both C = L and C = R are

possible (when U(I) = {L,R}): use (P2) and (P3); cf. also (7). Thus
v(x)lm = ~ * (L,..., L) or v(x)lm * (R,..., R) for some U(1). Also,
if x E Ui B for some 1  i  m then we have = fl * (L,..., L)
or v(x)lm * (R,..., R) for some ~ E Ll (i) . Hence

and

as required. D

Now we face the hardest part of the section: we are going to show

(Lemmas 3.10 and 3.14) that, for any m,

where recall that 5(a, m) is the family of subsets ,S’ of {I, 2,..., m} having
for any 1  i  m the property that Card(5’ n {I, 2, ... , i}) :S zi, where z2
is the number of zeros of the sequence (3li’

We begin by introducing the useful notion of irregularitg. Let x E T.
We define the sequence $(x) = ( ~m ) °°-1 E ~ N, Yl’ by Øm = Nor Øm = Y
according to, respectively, 1 

= zdm or not (we mean zo = do = 0).
Notice that if x E for some m then Lemma 3.5 implies that  di
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for any 1  i  m + 1, so Oi = Y means Zd, - 1  Zd, for these indexes. Also,
observe that ~1 = N regardless x. Now

DEFINITION 3.7. - Let x E Us. We say that 1  i  m is irregular
(for x) if the following properties hold:

(i) zd2 is even and vi = R (resp. zd2 is odd and vi - L) ;

LEMMA 3.8. - Let x E Us. With the above notation, suppose that
1  r  77~ are such that that Øi == N for any r  i  s. Also, suppose
that zdr is even (resp. odd). Then

(i) 

(ii) if s  t  m and (vs, - - ., vt) = (R,L,R,L,...) (resp. (vs, - .. I vt) =
(L, R, L, R, ... ) ) then all numbers i with s  i  t are irregular.

Proof. - We can for example assume that zdr is even.

Let r  i  s. We claim that

for some

The statement is obvious if Z = Ir -- 1. if z’ &#x3E; r or r &#x3E; 1 then we have

and

for some p E Z; by Lemma 3.5 and (P8) we get p E 7~- U f 0, 11 and (12)
follows.

Now consider the following possibilities:

(a) If 1 then p  1 by the definition of di, and vi - L (recall
that zd2 is even and use (P2) and (7)).

(b) If di  I - I then p E f 0, 11 is impossible, because it would contradict
either the definition of di (in the case p - or (10) (in the case
p = 1 - (3d~+I)’ Then p E Z- and we get again vi = L.
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(c) If di+1 = di then p V (0, 1) , as otherwise we use (P7) or (P6) and get
with p’ E 10, 11, arriving to a contradiction as in (b).

Thus, if vi = R, we must have di - i -1, = 3i - 0 and di  di+ i .
In particular we get i = s, since if i  s then we can use di  di+l to
get 1, a contradiction. Then vi = L for any r  i  s and we have

proved (i).

Concerning (ii) assume vs = R, when

with PI E 7~- U ~0,1~ (recall (12)), (3s = 0 and s - 1 == ds  ds+,. As

zds - Zd, is even, s is irregular. Moreover, vs = R gives PI = 1, which
means that P2 C 7~- U 10, 11 by (P8). Observe also that

Since we are done in the case s = m, we can assume s  m, when

= s by Lemma 3.5. Now, if vs+1 = L, this forces (3s+1 = 0 and p2 = 1
(and then ds+1  ds+2), which together with the fact that is

odd (because (3s = 0) implies the irregularity of s + 1. Also, p2 = 1 implies
p3 E Z- U ~0,1~ by (P8). Then, if s + 2  m and Vs+2 - R, we reason
similarly and prove the irregularity of s + 2 and so on. Hence (ii) follows. 0

Next, if x E T let

be the sequence of sets £m C f 1, ... , m} containing the indexes 1  i  m

such that ~ vi (here we mean vo = L). Notice that if i  m then

Ei We also mean Eo = 0.

LEMMA 3.9. - Let x E Um and 1  i  m. Then Card £i  zd2 +1.

Moreover, if Card Ei = Zd,, + 1 then i is irregular.

Proof. We will prove the lemma inductively. In fact, it follows

easily from Lemma 3.8 in the case i = 1.

Now, fixed 1  r  m, assume it to be true for all 1  i  r. We

distinguish between several possibilities:
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(a) §r = Y. Let be the last integer i  r satisfying 0- N (this
makes sense because, recall, ~1 = N). As Zd£-l because either
f - 1 or .~ - 1 is regular (use the induction hypothesis), and &#x3E; zd2
for any  i  r, we get that Card E, + 1 and, moreover, that if
Card E, - + 1 then is irregular and Card Ei+1 = Card Ei + 1 for

any  i  r. Assume for instance (v.~, ... , vr) = (R, L, R, L, ...). Since .~

is irregular we know that zd, is even, so we can apply Lemma 3.8 (ii) to
deduce that all numbers i with  i  r (in particular i = r) are irregular.

(b) (~r-1, ~~. ) - (N, N). Then r - 1 is regular and 
so we automatically get Card Er  Zdr + 1. If we exactly

have Card E, - zdr + 1, that is (L, R) (or (R, L))
then Lemma 3.8 (namely, r - 1 and r plays respectively the role of r and
s = t there) implies that r is irregular and we are done.

(c) (~~._ 1, §r) = (Y, N). This is the most complicated case. As in

case (b), Card E,  Zd, + 1 is guaranteed by the induction hypothesis.
Now suppose that Card Er == + 1 and for example assume Vr = R,
when vr) = (L, R) as before. Let .~ be the last integer i  r - 1

satisfying Øi == N, assume for instance that r - .~ is odd (the other case is
analogous) and consider the following possibilities:

(cl) .~ is irregular and vg = L. Then we have ==

(L,..., L, R). Since the combination (v,~, ... , - (L, R,..., L)
is impossible because r - 1 is regular (cf. Lemma 3.8 (ii)), and
any other combination implies the contradiction ,zdr as

it is very simple to check (take into account),
we conclude that this case is in fact impossible.

(c2) .~ is irregular and vt = R. Now the only feasible combination

is one such that Card Ef = r - . - 1, say e.g.

(Vf,..., vr ) = (R, R, L, R,..., L, R) ; moreover we must have
Zd, - zd, = r - f - 1. But is irregular, so zd, (and then Zd,) are even.
Hence r is irregular by Lemma 3.8 (ii).

(c3) .~ is regular L. Here (Vf,..., Vr-l, vr) - (L, R,..., L, R),
with zdr - zde = r - f - 1, is the only possibility. Then zd, and zdr
are again even and r is irregular.

(c4) .l is regular and vl = R. This case is again impossible, because

implies ~~.  zdr for any possible structure for

Thus, in all cases, we have shown that Card E, + 1 and that r
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is irregular if + 1. The lemma is proved. 0

We are ready to prove the first part of ( 11 ) :

Proof. Notice that if x, y E Us and 7~ then

E~(~) 7~ ~’.,.L (~). Thus, in order to prove the lemma, we must just show
that if x E Us then Ei has cardinality at most zi for any 1  i  m.

Two possibilities arise. If Card E.  Zd,, then we just apply Lemma 3.5
to get di  i and Card ~i  zi. If + 1 then we use the

irregularity of i (cf. Lemma 3.9) to get zi - 1 and zd2 = 

Then Card £i  zi- i + 1 - z- as desired. 0

To prove the other inequality in (11) we state and prove below
three technical, more or less similar lemmas. In what follows, if r &#x3E; 0

and zr is even (resp. odd) then we say that a point x E K is r-central
if  x  (resp.  x  Kol,,,o).

LEMMA 3.11. Let I  r  s and suppose Or 0 and (3t = 1

(i) If i &#x3E; r, j &#x3E; s and x E K,sls S then there is y C Kol, such that

(ii) If i = r, j &#x3E; s and x E then there is an (i - 1)-central point
such that

(iii) Ifi &#x3E; r, j = s and x E is then there is

such that

(iv) and x E (~ 2013 I)-central then there is an

(i - I)-central point y e such that ~~ ’~’ (?/) == X.

Moreover, if Zr is even (resp. odd) then y can be got so that

92t-1 -2"-1 (y)  Ko (resp. g2’- 1 - 2" (y) &#x3E; for any i ::; t  j in
cases (i) and (iii), and for any i  t  j is cases (ii) and (iv).

Proof - We will assume in what follows that, e.g., Zr is even. As far
as the final statement of the lemma is concerned, we will prove indeed the
more general facts
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in cases (i) and (iii), and

in cases (ii) and (iv). Concerning this last equation, notice that if i  t then

(i) Let

Using (P6) it is easy to check that if we are in the first case then

while in the second case we have

and then

This proves (i) and (13).

(ii) Put

Observe that in the first case j - i &#x3E; 2, while in the second case j - i &#x3E; 3.

Thus, in any case, Oi+l  0 and all points from Ko are (i - I)-central.
Moreover, we respectively have 

’

and

and we can see similarly as above that (14) holds and

which implies (ii).
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(iii) Notice that in this case we must have s - r = j - r &#x3E; 1 - Let
x E K/3IJ-l be ( j - 1)-central, when there must exist some &#x3E; 1 and p  0

such that Now, if we take

we have

for and

which proves (iii) and (13).

be (j - 1 )-central, 1 and p  0 such

We have again two cases. Let

Then, in any case, all points from Ko are (i - 1)-central. Notice that
if j - i = 1 then we directly get

and (iv) follows (here (14) means nothing). In the case j - i &#x3E; 1 we have

and now it is easy to realize that (14) holds and

hence (iv) follows.

The lemma is proved. D

LEMMA 3.12. - Let 1  s  j and suppose 13s = 0 and (3t = 1 for any
, 

central) then there is y E K such that g2j-1 (y) - x and g2t-1 (y)  K,s
for any 1  t  j.
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Proof. - If
central with

and p  0, and j &#x3E; 1

= (p - 1)). In the first cases we get 1 and in

the second ones we get ,
the lemma holds.

it is easy to check that

LEMMA 3.13. Let r  i  m (resp. r = i  m) and suppose (3r = 0.
Then there is a point x E (resp. an (z-- I)-central point x E 
such that, for any if zr is even and

if z, is odd ; moreover,

Proof. We will assume that Zr is even. If we are in the case i &#x3E; r

then it suffices to take any point when

and any point when If we are in the

case t = r then we can take any point
and any point

Now we can complete the proof of ( 11 ) :

LEMMA 3.14. Let m e N. Then CardU(rn) &#x3E; CardS((3, m).

Proof. Let ,S’ m} be such that Card(s t

for any 1  i  m. We must find a point x E Um such that S.

If ,S’ = 0 then it is easy to find a point x E K such that  K~1
for any 1 and E Kh (and thus f2’-’ E Kh for any
t &#x3E; m + 2). Then x E T and, in fact, x E Us. Obviously £m(r) = 0 = S
and we are done.

Assume now ,S’ # 0 = fil, i2, iql with q &#x3E; 1 and 1  ii  ~ ~ ~ 

iq  m. By the definition of S, if 1  ci  ...  cq are the q first indexes
.~ satisfying 0 then we must have if &#x3E; cf for any .~. Now, using
Lemmas 3.13, 3.11 and 3.12 it is simple to find a point x E K such that

(a) if t = if for some 1  .~  q then dt = cf or dt = Cf - 1 according to
whether if &#x3E; ci or if = moreover, in the second case the point f2t-1 (x)
is (t - 1)-central;

(b) if if -  t for some 1 + 1 then dt = (here we mean
io == Co == 0 and i q+ I = oo) ;
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is odd (resp. even) and then

also, (here we

In particular, (c) implies that x E (and then x E 
and E,,, (x) = S. We are done. 11

Finally we are ready to prove the result we formulated at the beginning
of the section:

PROPOSITION 3.15. - With the notation above, s(D, E, K, g) = h,.

Proof. It follows from Lemmas 3.4, 3.6, 3.10 and 3.14. 0

And now a final easy lemma before proving Theorem A:

LEMMA 3.16. Let a E ~0,1 ~°° . Then hak(a) = ha for any k E N.

Proof. Of course it suffices to show ha(a) = ha .
If R E S(m, a (a)) for some m then we obviously have

Therefore 1, a) and ha(a) follows.

Conversely, let S C + 1, a) be nonempty, let S’ _ S B 
and R - R(S) - ~ s - 1 : s E It is easy to check that R E

Moreover, if R E is given then there are

at most m + 1 sets S’ in S(m + 1, a) satisfying R(S) = R. Hence

Card S(m + 1, a)  1 + (m + 1) Card S(m, and ha  ha(a) follows. 0

Proof of Theorem A. - Let E &#x3E; 0 and I~E be the number
from Lemma 3.3. Combining Lemmas 3.1 and 3.2 we can find a sequence
a E such that, if g = f2k and K == llalk (/), then

Since Proposition 3.15 and Lemma 3.16 give s (D, E, K, g) = ha , we conclude
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Conversely, take cx E A"(f), put E = IKa(f)1 ] (thus a E NE(f)), take
k = kE, 9 = and K = as before, and use Proposition 3.15 and
Lemmas 3.16 and 3.1 to get

Hence ha  hD ( f ), which ends the proof. 0

4. An ordering preserved by increasing concave maps.

The main ideas behind the proof of Theorem B can be roughly
described as follows. According to Definition 1.6, computing ha implies
basically to evaluate the (logarithmic) means of large amounts of

combinatorial numbers constrained by certain conditions. This leads

naturally to the consideration of the map g we defined in the Introduction,
thus allowing us to dispose of combinatorics and simplifying the calculations
a lot. When the above-mentioned constraints are translated into this new

language one arrives immediately to the ordering " ~ " described below
Lemma 4.2 and discovers that if (x 1, ... , is given then x~ )
turns out to be a point at which Gn attains the constrained maximum

by the restriction (7/1,..., gn ) -~ (x 1, ... , (here it is essential that g is
concave and increasing). From this point on, the pieces of the puzzle are
relatively easy to adjust (cf. Proposition 4.9).

Thus we begin by recalling some simple properties of the maps Fn.
We omit the easy proofs. In what follows, if x E R then x-s-x has exactly
length s; thus, e.g., x-2-x = x, x.

6 E and s, i E N. Then vcve have

for any j ) ;

for any j) ;
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LEMMA 4.2. - Let

Then there are numbers and o

( uniquely determined by such that

In what follows we will use the notation

whenever

for any

(or, equivalently, for any i). Regarding this the

following lemma will be needed later:

LEMMA 4.3. Let (x 1, ... , xn ), (z1, ... , E With the notation

of Lemma 4.2 for (xl, ... , xn), assume that there are numbers 61,~2,...,~
such that

Then if and only if mean

mean ( for any

Proof. The "only if" part of the lemma is trivial. Conversely,
assume mean(ZI, ... , Zis)  for any 1  s  r and fix a

number 1  i  n, say  i  is . Then

mean(zl,..., zi)

Observe that Lemma 4.3 implies in particular 
(x 1, ... , x~ ) . Hence the statement of the next proposition, the first key
result of the section, makes sense.
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PROPOSITION 4.4. - Let v : [a, b] - R be an increasing concave map
and let Vn : [a, - R be defined by

Then Vn has a constrained maximum at

) by the restriction

Proof. We will make induction on r (we are using the notation
from Lemma 4.2).

Assume first r = 1 and ( yl , ... , (x 1, ... , Xn). Then

we have used that v is concave and increasing and that

because r = 1.

Let us prove now the statement in the general case. We must show
that if (yl , ... , yn ) ~ (x 1, ... , is given then

Then by Lemma 4.3 and (because v is

Hence it suffices to prove

I or, equivalently,

Since v is continuous, we can trivially also assume that Y~ has a constrained
maximum at (yl , ... , yn ) and then at (zl , ... , zn ) , that is,

then 1
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If ej  dj for any j then there is nothing to prove. As (zl , ... , 
(xi,...,x,,) implies ei  dl, we can assume ds  ds+l  es+l for

some 1  s  r (recall that the numbers dj form a strictly increasing
sequence, cf. Lemma 4.2).

We claim that v is affine on [es, e+i] . Fix otherwise a number c &#x3E; 0

small enough, write
and observe that

and hence

Define (wl,..., w,,) by

otherwise

and apply

to deduce mean(w1 , ... , =  if

j~ ~ s. Moreover, ds+1  implies mean(zl, ... , Zls)  mean(xl, ... , 
so it is not restrictive to assume mean(WI, ..., Wis)  mean(xl, ... , Xis) as
well. Hence (wl , ... , Wn) :j (~i,..., xn ) by Lemma 4.3, which contradicts
(17) and (16).

Denote

and define by

otherwise



1122

and

Clearly (adding apostrophes to describe the corresponding parameters for
the sequence ... , in Lemma 4.2) we have r’ - r - 1,

Apply now Lemma 4.3 to get and use

the induction hypothesis to deduce

. Finally notice that

and take into account that v is affine in [e~, to get

inequality (15) is proved. 0

Proposition 4.4 can be reformulated as follows:

COROLLARY 4.5. Let Yn be defined as in Proposition 4.4. Then
vn o Fn : [a, increasing, that is,

Proof. Just notice that Fn
by Lemma 4.3 and use Proposition 4.4.
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As we explained at the beginning of the section, the above results
will be used mainly for the maps g and Gn from Theorem B. The other
key property of g is the following one; recall that [x] denotes the integer
part of x.

PROPOSITION 4.6. - For any n E N let gn : [0, -1 ---+ R be defined by

Then (gn ) n converges uniformly to g on [0, ~].
Proof - Let xo E (0, ) ] be arbitrarily fixed. First we will prove

that (gn)n converges uniformly to g on [xo, 2 1 1.
Consider the maps tn, vn : ~xo, 2 ~ --+ R defined respectively by

and

Clearly these maps are well defined if n is large enough. Further it is easy to
check that (un ) n converges uniformly to 0 and (tn ) n converges uniformly to
the identity map. Since g is uniformly continuous, (g o tn)n and then (vn)n
converge uniformly to g on ~xo, 2 ~ .

Next use Stirling’s formula and realize that if m is large enough then

or, equivalently,

Replacing m by n in (18) and by [xn] and n - [xn] in (19), multiplying the
resultant chains of inequalities, taking logarithms and dividing by n we get

and n is large enough. Thus (gn ) n converges uniformly
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Fix 6 &#x3E; 0 and find a number xo small enough so that and

then a number n, such that g(x) I  -1,E for any x E ~xo, 2 ~ ] and
any n &#x3E; nE . Let x E [0, xo~ . Then

for any n &#x3E; nE . This guarantees the uniform convergence of (gn ) n to g
on the whole interval ~0, 2 ~ . 0

Next lemmas show how to combine Propositions 4.4 and 4.6 with
Definition 1.6; they culminate in Proposition 4.9. Until the end of the
section the sequence a E {O, I} 00 will remain fixed. If s  r then the

number of zeros of the sequence as+2, ... , air will be denoted by 
For any n E N the map ~ : {0,1,..., defined by

say that it has a constrained maximum at

restriction

LEMMA 4.7. - Let m e N and n = Then we have

Proof. Clearly the statement of the lemma follows once we prove

First of all observe that if ,S’ E S(a, m) and we write pr -
then Definition 1.6 implies
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Consider now any sequence satisfying

As m - n2  2n + 1, the family of subsets of ~ 1, ... , m} having exactly or
elements from {( r - 1)n + 1,..., rn~ for any r has cardinality less than

and then less than has exactly
(n + 1)n elements, we get the second inequality in (20).

On the other hand suppose that ,S’ C ~ 1, ... , does not intersect

nor ~n2 ~- l, ... , m~ and has exactly elements from

{(r 2013 1)n + 1, ... , rn~, 2  r  n. Notice that if 1  i  m with

(r-1)n  i  rn, 2  r  n, then snf il has at most ql,n +.. ’+qr-l,n
elements. Since ql,n +... + qr-l,n C zo,i we conclude that S

belongs to S(a, m). Thus

and since ( n )  2n, the first inequality in (20) is proved (when writingQn,n
2  r  n we have assumed n &#x3E; 2; if n = 1 then the statement is trivial). D

LEMMA 4.8. - With the above notation,

Proof. Fix E and suppose n be large enough so that |x - yl  1 /n
implies for any

(cf. Proposition 4.6). Denote and

we have used Lemma 4.1 (ii).
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Conversely,

here we have used Proposition 4.4. The lemma is proved.

Combining Lemmas 4.7 and 4.8 we finally get:

PROPOSITION 4.9. With the above notation,

5. Proof of Theorem B and its corollaries.

Proof of Theorem B. - Write a = 1- a, that is, ai = 1- cxi for any i.
Define the numbers as in the previous section, fix for the moment n E N
and write

for any 1  r  n. First of all we emphasize that

by Lemma 4.1 (v). Further, we claim that

In fact observe that
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by Lemma 4.1 (iii) and (iv); since

and then

by Corollary 4.5, we deduce

Analogously, I implies

and (22) follows. Finally, observe that if then

Merging Proposition 4.9 and (21), (22) and (23), the theorem follows. 0

Proof of Corollary B.l. - Fix n E N and assume p &#x3E; 0 be small

enough so 6, + p implies c + I /n for any
x, y E [0,1]. to find an

integer r large enough so that if

then

for any m.

Finally define v : [0, 1 -f- bE + p] -~ R by v(y) = g(y) if y E [0,1] and
v(y) - log 2 otherwise. Since v is concave and increasing we can apply
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Corollary 4.5 to the corresponding maps Vm. Let m &#x3E; r. Then

(we have used Lemma 4.1 (i)) and hence ~/3 +,E + I/n . Since we
can prove analogously + E + 1 /n and n is arbitrary, the proof is
finished. D

Proof of Corollary B.2. - Notice that if we use Theorem B to define

h,y for any sequence -y E [0,1]00 then Corollary B.1 makes sense and holds
true for all sequences from [0,1]00. In particular if 1 is the sequence given
by-yi = 1 - A for any i then we have A (a, 1) = 0 and so ha == h, = g(A). D

Proof of Corollary B.3. - For any m let zm be the number of zeros
of the sequence al, ... , am, when A = limsup~_~ zmjm. We will simply
write K == K(A).

We begin by proving the second inequality in (4). Trivially we can
assume A  1. Fix 0  c  1 - A. Then zmlm  A + E for any m large
enough. Since (1 - ~x l , ... , 1 - an) --- (1-zm-1, 0,..., 0) we get

for all large m. Thus ha  g(A + 6) for any c &#x3E; 0 and then ha  g(A).

Proving the other inequality requires a bit more of effort. Fix again
E &#x3E; 0 and take a small 0  6  K with the property that

this makes senses since
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Let mo be fixed. Then there is m &#x3E; max{m0, 1161 such that

further, 1 /m  6 implies the existence of an integer r, satisfying

(24), (26) and (27) guarantee

Thus ha &#x3E; log((A + as we desired to prove.

It only rests to show that the first equality in (4) is possible (for
the second one just use Corollary B.2). To this end fix 0  A  1, put
~ = K(A) and construct sequences of positive integers (on)n and (pn)n
with the properties

Finally define
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Clearly, the above conditions imply

let us prove that ha = log((A + ~)/~). Denote first of all

it is rutinary to verify that

and then that u(x) has a strict absolute maximum at ~. Fix E &#x3E; 0 and

find 6 &#x3E; 0 satisfying

for any x; clearly, such a number 6 exists. Next apply (28), (29) and (30)
to find a number no large enough so that

for any n &#x3E; no. We claim that

this will finish the proof.

and put
Also, let f  be the real number

satisfying (cf. (28))
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Observe that if s  then

by (28), while if s &#x3E; + ~ then

again by (28); hence, to prove (34), it is not restrictive to assume

Now use

(32), (33), (31) and (25) to get
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