The “quantum duality principle” states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors and , inverse to each other, such that in both cases the Lie bialgebra associated to the target object is the dual of that of the source object. Such a result was claimed true by Drinfeld, but seems to be unproved in the literature: I give here a thorough detailed proof of it.
Le “principe de dualité quantique” affirme que la quantification d’une bigèbre de Lie - moyennant une algèbre enveloppante universelle quantifiée (en abrégé, une QUEA) - donne aussi une quantification de la bigèbre de Lie duale (via son groupe de Poisson formel associé) - moyennant une algèbre de Hopf de séries formelles (QFSHA) - et, vice versa, une QFSHA associée à une bigèbre de Lie (via son groupe de Poisson formel associé) donne également une QUEA pour la bigèbre de Lie duale. Plus précisément, il existe deux foncteurs et , inverses l’un de l’autre, tels que dans les deux cas la bigèbre de Lie associée à l’objet cible est la duale de celle de l’objet source. Une version plus faible de ce type de résultats avait été annoncée par Drinfeld, mais aucune preuve ne figure dans la littérature : j’en donne ici une preuve complète et détaillée.
Keywords: quantum groups, topological Hopf algebras
Mot clés : groupes quantiques, algèbres de Hopf topologiques
Gavarini, Fabio 1
@article{AIF_2002__52_3_809_0, author = {Gavarini, Fabio}, title = {The quantum duality principle}, journal = {Annales de l'Institut Fourier}, pages = {809--834}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {3}, year = {2002}, doi = {10.5802/aif.1902}, zbl = {1054.17011}, mrnumber = {1907388}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1902/} }
TY - JOUR AU - Gavarini, Fabio TI - The quantum duality principle JO - Annales de l'Institut Fourier PY - 2002 SP - 809 EP - 834 VL - 52 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1902/ DO - 10.5802/aif.1902 LA - en ID - AIF_2002__52_3_809_0 ER -
Gavarini, Fabio. The quantum duality principle. Annales de l'Institut Fourier, Volume 52 (2002) no. 3, pp. 809-834. doi : 10.5802/aif.1902. https://aif.centre-mersenne.org/articles/10.5802/aif.1902/
[A] Hopf algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, Cambridge, 1980 | MR | Zbl
[CG] A quantum duality principle for Poisson homogeneous spaces (Preprint)
[Dr] Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986) (1987), pp. 798-820 | Zbl
[E] Quantization of Lie bialgebras and shuffle algebras of Lie algebras (2000) (e-print, math.QA/0008128) | MR
[EK1] Quantization of Lie bialgebras, I, Selecta Math. (New Series), Volume 2 (1996), pp. 1-41 | DOI | MR | Zbl
[EK2] Symétries quantiques, (Les Houches, 1995) (1995), pp. 935-946 | Zbl
[FRT] Quantum groups, Algebraic Analysis (1989), pp. 129-139 | Zbl
[Ga1] Dual affine quantum groups, Math. Zeitschrift, Volume 234 (2000), pp. 9-52 | DOI | MR | Zbl
[Ga2] The global quantum duality principle: theory, examples, applications (2001) (e-print, math.QA/0108015) | MR | Zbl
[KT] Biquantization of Lie bialgebras, Pac. Jour. Math, Volume 195 (2000), pp. 297-369 | DOI | MR | Zbl
[M] Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, Providence, RI, 1993 | MR | Zbl
Cited by Sources: