The quantum duality principle
[Le principe de dualité quantique]
Annales de l'Institut Fourier, Tome 52 (2002) no. 3, pp. 809-834.

Le “principe de dualité quantique” affirme que la quantification d’une bigèbre de Lie - moyennant une algèbre enveloppante universelle quantifiée (en abrégé, une QUEA) - donne aussi une quantification de la bigèbre de Lie duale (via son groupe de Poisson formel associé) - moyennant une algèbre de Hopf de séries formelles (QFSHA) - et, vice versa, une QFSHA associée à une bigèbre de Lie (via son groupe de Poisson formel associé) donne également une QUEA pour la bigèbre de Lie duale. Plus précisément, il existe deux foncteurs 𝒬𝒰𝒜𝒬𝒮𝒜 et 𝒬𝒮𝒜𝒬𝒰𝒜, inverses l’un de l’autre, tels que dans les deux cas la bigèbre de Lie associée à l’objet cible est la duale de celle de l’objet source. Une version plus faible de ce type de résultats avait été annoncée par Drinfeld, mais aucune preuve ne figure dans la littérature : j’en donne ici une preuve complète et détaillée.

The “quantum duality principle” states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors 𝒬𝒰𝒜𝒬𝒮𝒜 and 𝒬𝒮𝒜𝒬𝒰𝒜, inverse to each other, such that in both cases the Lie bialgebra associated to the target object is the dual of that of the source object. Such a result was claimed true by Drinfeld, but seems to be unproved in the literature: I give here a thorough detailed proof of it.

DOI : 10.5802/aif.1902
Classification : 17B37, 20G42, 81R50, 16W30
Keywords: quantum groups, topological Hopf algebras
Mots-clés : groupes quantiques, algèbres de Hopf topologiques

Gavarini, Fabio 1

1 Università degli Studi di Roma "Tor Vergata", Dipartimento di Matematica, Via della Ricerca Scientifica 1, 00133 Roma (Italie)
@article{AIF_2002__52_3_809_0,
     author = {Gavarini, Fabio},
     title = {The quantum duality principle},
     journal = {Annales de l'Institut Fourier},
     pages = {809--834},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {3},
     year = {2002},
     doi = {10.5802/aif.1902},
     zbl = {1054.17011},
     mrnumber = {1907388},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1902/}
}
TY  - JOUR
AU  - Gavarini, Fabio
TI  - The quantum duality principle
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 809
EP  - 834
VL  - 52
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1902/
DO  - 10.5802/aif.1902
LA  - en
ID  - AIF_2002__52_3_809_0
ER  - 
%0 Journal Article
%A Gavarini, Fabio
%T The quantum duality principle
%J Annales de l'Institut Fourier
%D 2002
%P 809-834
%V 52
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1902/
%R 10.5802/aif.1902
%G en
%F AIF_2002__52_3_809_0
Gavarini, Fabio. The quantum duality principle. Annales de l'Institut Fourier, Tome 52 (2002) no. 3, pp. 809-834. doi : 10.5802/aif.1902. https://aif.centre-mersenne.org/articles/10.5802/aif.1902/

[A] N. Abe Hopf algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, Cambridge, 1980 | MR | Zbl

[CG] N. Ciccoli; F. Gavarini A quantum duality principle for Poisson homogeneous spaces (Preprint)

[Dr] V. G. Drinfeld Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986) (1987), pp. 798-820 | Zbl

[E] B. Enriquez Quantization of Lie bialgebras and shuffle algebras of Lie algebras (2000) (e-print, math.QA/0008128) | MR

[EK1] P. Etingof; D. Kazhdan Quantization of Lie bialgebras, I, Selecta Math. (New Series), Volume 2 (1996), pp. 1-41 | DOI | MR | Zbl

[EK2] P. Etingof; D. Kazhdan Symétries quantiques, (Les Houches, 1995) (1995), pp. 935-946 | Zbl

[FRT] L. D. Faddeev; N. Yu. Reshetikhin; L. A. Takhtajan; M. Kashiwara, T. Kawai (eds.) Quantum groups, Algebraic Analysis (1989), pp. 129-139 | Zbl

[Ga1] F. Gavarini Dual affine quantum groups, Math. Zeitschrift, Volume 234 (2000), pp. 9-52 | DOI | MR | Zbl

[Ga2] F. Gavarini The global quantum duality principle: theory, examples, applications (2001) (e-print, math.QA/0108015) | MR | Zbl

[KT] C. Kassel; V. Turaev Biquantization of Lie bialgebras, Pac. Jour. Math, Volume 195 (2000), pp. 297-369 | DOI | MR | Zbl

[M] S. Montgomery Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, Providence, RI, 1993 | MR | Zbl

  • Gautam, Sachin; Rupert, Matthew; Wendlandt, Curtis The R-matrix formalism for quantized enveloping algebras, Annales de l'Institut Fourier (2025), p. 1 | DOI:10.5802/aif.3688
  • García, Gastón Andrés; Gavarini, Fabio Formal multiparameter quantum groups, deformations and specializations, Annales de l'Institut Fourier (2025), p. 1 | DOI:10.5802/aif.3675
  • Lee, Heon; Voigt, Christian Beurling–Fourier Algebras of q-Deformations of Compact Semisimple Lie Groups and Complexification, International Mathematics Research Notices, Volume 2025 (2025) no. 2 | DOI:10.1093/imrn/rnae290
  • Wendlandt, Curtis The restricted quantum double of the Yangian, Canadian Journal of Mathematics (2024), p. 1 | DOI:10.4153/s0008414x24000142
  • Appel, Andrea; Toledano Laredo, Valerio Monodromy of the Casimir connection of a symmetrisable Kac–Moody algebra, Inventiones mathematicae, Volume 236 (2024) no. 2, p. 549 | DOI:10.1007/s00222-024-01242-8
  • Toledano Laredo, Valerio; Xu, Xiaomeng Stokes phenomena, Poisson–Lie groups and quantum groups, Advances in Mathematics, Volume 429 (2023), p. 109189 | DOI:10.1016/j.aim.2023.109189
  • Frassek, Rouven; Tsymbaliuk, Alexander Rational Lax Matrices from Antidominantly Shifted Extended Yangians: BCD Types, Communications in Mathematical Physics, Volume 392 (2022) no. 2, p. 545 | DOI:10.1007/s00220-022-04345-6
  • Ballesteros, Angel; Gutierrez-Sagredo, Ivan; Mercati, Flavio Coisotropic Lie bialgebras and complementary dual Poisson homogeneous spaces, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 31, p. 315203 | DOI:10.1088/1751-8121/ac0b8a
  • Tsymbaliuk, Alexander PBWD bases and shuffle algebra realizations for U\varvecv(Lsln),U\varvecv1,\varvecv2(Lsln),U\varvecv(Lsl(m|n)) and their integral forms, Selecta Mathematica, Volume 27 (2021) no. 3 | DOI:10.1007/s00029-021-00634-5
  • De Commer, K.; Matassa, M. Quantum flag manifolds, quantum symmetric spaces and their associated universal K-matrices, Advances in Mathematics, Volume 366 (2020), p. 107029 | DOI:10.1016/j.aim.2020.107029
  • APPEL, A.; GAUTAM, S. AN EXPLICIT ISOMORPHISM BETWEEN QUANTUM AND CLASSICAL sln, Transformation Groups, Volume 25 (2020) no. 4, p. 945 | DOI:10.1007/s00031-019-09543-6
  • Finkelberg, Michael; Tsymbaliuk, Alexander Shifted Quantum Affine Algebras: Integral Forms in Type A, Arnold Mathematical Journal, Volume 5 (2019) no. 2-3, p. 197 | DOI:10.1007/s40598-019-00118-7
  • Appel, Andrea; Toledano Laredo, Valerio Coxeter categories and quantum groups, Selecta Mathematica, Volume 25 (2019) no. 3 | DOI:10.1007/s00029-019-0490-y
  • Ballesteros, Angel; Gutierrez-Sagredo, Ivan; Mercati, Flavio Coisotropic Lie bialgebras and complementary dual Poisson homogeneous spaces, arXiv (2019) | DOI:10.48550/arxiv.1909.01000 | arXiv:1909.01000
  • Appel, Andrea; Toledano Laredo, Valerio A 2-categorical extension of Etingof–Kazhdan quantisation, Selecta Mathematica, Volume 24 (2018) no. 4, p. 3529 | DOI:10.1007/s00029-017-0381-z
  • Berenstein, Arkady; Greenstein, Jacob Double canonical bases, Advances in Mathematics, Volume 316 (2017), p. 381 | DOI:10.1016/j.aim.2017.06.005
  • Ballesteros, Ángel; Herranz, Francisco J.; Musso, Fabio; Naranjo, Pedro The κ-(A)dS quantum algebra in (3 + 1) dimensions, Physics Letters B, Volume 766 (2017), p. 205 | DOI:10.1016/j.physletb.2017.01.020
  • Habiro, Kazuo; Lê, Thang T Q Unified quantum invariants for integral homology spheres associated with simple Lie algebras, Geometry Topology, Volume 20 (2016) no. 5, p. 2687 | DOI:10.2140/gt.2016.20.2687
  • Kamnitzer, Joel; Webster, Ben; Weekes, Alex; Yacobi, Oded Yangians and quantizations of slices in the affine Grassmannian, Algebra Number Theory, Volume 8 (2014) no. 4, p. 857 | DOI:10.2140/ant.2014.8.857
  • Ballesteros, Ángel; Musso, Fabio Quantum algebras as quantizations of dual Poisson–Lie groups, Journal of Physics A: Mathematical and Theoretical, Volume 46 (2013) no. 19, p. 195203 | DOI:10.1088/1751-8113/46/19/195203
  • Brochier, Adrien A Kohno–Drinfeld Theorem for the Monodromy of Cyclotomic KZ Connections, Communications in Mathematical Physics, Volume 311 (2012) no. 1, p. 55 | DOI:10.1007/s00220-012-1424-0
  • Chemla, Sophie Duality properties for quantum groups, Pacific Journal of Mathematics, Volume 252 (2011) no. 2, p. 313 | DOI:10.2140/pjm.2011.252.313
  • Fioresi, Rita; Gavarini, Fabio Quantum duality principle for quantum Grassmannians, Quantum Groups and Noncommutative Spaces (2011), p. 80 | DOI:10.1007/978-3-8348-9831-9_4
  • Enriquez, Benjamin; Halbout, Gilles Quantization of quasi-Lie bialgebras, Journal of the American Mathematical Society, Volume 23 (2010) no. 3, p. 611 | DOI:10.1090/s0894-0347-10-00654-5
  • Halbout, Gilles; Tang, Xiang Quantization of Poisson–Hopf stacks associated with group Lie bialgebras, Pacific Journal of Mathematics, Volume 245 (2010) no. 1, p. 99 | DOI:10.2140/pjm.2010.245.99
  • Gavarini, Fabio The global quantum duality principle, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2007 (2007) no. 612 | DOI:10.1515/crelle.2007.082
  • Enriquez, Benjamin; Halbout, Gilles Coboundary Lie bialgebras and commutative subalgebras of universal enveloping algebras, Pacific Journal of Mathematics, Volume 229 (2007) no. 1, p. 161 | DOI:10.2140/pjm.2007.229.161
  • Ciccoli, Nicola; Gavarini, Fabio A quantum duality principle for coisotropic subgroups and Poisson quotients, Advances in Mathematics, Volume 199 (2006) no. 1, p. 104 | DOI:10.1016/j.aim.2005.01.009
  • Geer, Nathan Etingof–Kazhdan quantization of Lie superbialgebras, Advances in Mathematics, Volume 207 (2006) no. 1, p. 1 | DOI:10.1016/j.aim.2005.11.005
  • Halbout, Gilles Formality theorem for Lie bialgebras and quantization of twists and coboundary r-matrices, Advances in Mathematics, Volume 207 (2006) no. 2, p. 617 | DOI:10.1016/j.aim.2005.12.006
  • Enriquez, B. A cohomological construction of quantization functors of Lie bialgebras, Advances in Mathematics, Volume 197 (2005) no. 2, p. 430 | DOI:10.1016/j.aim.2004.10.011
  • Gavarini, Fabio Poisson Geometrical Symmetries Associated to Non-Commutative Formal Diffeomorphisms, Communications in Mathematical Physics, Volume 253 (2005) no. 1, p. 121 | DOI:10.1007/s00220-004-1175-7
  • Enriquez, Benjamin; Halbout, Gilles Poisson algebras associated to quasi-Hopf algebras, Advances in Mathematics, Volume 186 (2004) no. 2, p. 363 | DOI:10.1016/j.aim.2003.08.007
  • Enriquez, Benjamin; Halbout, Gilles An ℏ-adic valuation property of universal R-matrices, Journal of Algebra, Volume 261 (2003) no. 2, p. 434 | DOI:10.1016/s0021-8693(02)00672-5
  • Gavarini, Fabio; Halbout, Gilles Braiding structures on formal Poisson groups and classical solutions of the QYBE, Journal of Geometry and Physics, Volume 46 (2003) no. 3-4, p. 255 | DOI:10.1016/s0393-0440(02)00147-x
  • Gavarini, Fabio A Global Version of the Quantum Duality Principle, Czechoslovak Journal of Physics, Volume 51 (2001) no. 12, pp. 1330-1335 | DOI:10.1023/a:1013322103870
  • Gavarini, Fabio Dual Affine Quantum Groups, arXiv (1997) | DOI:10.48550/arxiv.q-alg/9712013 | arXiv:q-alg/9712013

Cité par 37 documents. Sources : Crossref, NASA ADS