The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems
Annales de l'Institut Fourier, Volume 52 (2002) no. 3, pp. 735-777.

The so-called Lifted Root Number Conjecture is a strengthening of Chinburg’s Ω(3)- conjecture for Galois extensions K/F of number fields. It is certainly more difficult than the Ω(3)-localization. Following the lead of Ritter and Weiss, we prove the Lifted Root Number Conjecture for the case that F= and the degree of K/F is an odd prime, with another small restriction on ramification. The very explicit calculations with cyclotomic units use trees and some classical combinatorics for bookkeeping. An important point is the following: While dealing with our Euler systems, we have to keep track of the action of the Galois group, whose order is not invertible in the coefficient ring p . At the end we prove a generalization of the well-known Rédei-Reichardt theorem and explain the close link with our theory.

La “conjecture de Chinburg relevée” (Lifted Root Number Conjecture, LRNC) est une version beaucoup plus forte de la conjecture Ω(3) de Chinburg concernant les extensions galoisiennes K/F de corps de nombres. Tout en étant plus difficile que la conjecture Ω(3), la conjecture LRNC a l’avantage de se comporter très bien sous localisation. Avec une démarche de Ritter et Weiss comme point de départ, nous démontrons LRNC dans le cas où F= et où le degré de K/F est premier impair (de plus il y a une petite restriction sur la ramification). Nos calculs très explicites avec des unités cyclotomiques font intervenir des arbres et de la combinatoire classique comme outils d’organisation. Soulignons encore que nous devons, en travaillant avec le système d’Euler, tenir compte de l’action du groupe de Galois, groupe dont l’ordre n’est pas inversible dans l’anneau de coefficients p . À la fin, nous donnons une généralisation du théorème classique de Rédei et Reichardt et explicitons le lien étroit avec notre théorie.

DOI: 10.5802/aif.1900
Classification: 11R18,  11R33,  11R37,  05C05
Keywords: lifted Chinburg conjecture, Euler systems, combinatorics, trees
Greither, Cornelius 1; Kučera, Radiu 2

1 Universität des Bundeswehr München, Fakultät fur Informatik, Institut für theoretische Informatik und Mathematik, 85577 Neubiberg (Allemagne)
2 Masarykova Univerzita, P{ř}íprodov{ě}decká Fakulta, Janá{č}kovo nám 2a, 663 95 Brno (République Tchèque)
@article{AIF_2002__52_3_735_0,
     author = {Greither, Cornelius and Ku\v{c}era, Radiu},
     title = {The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and {Euler} systems},
     journal = {Annales de l'Institut Fourier},
     pages = {735--777},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {3},
     year = {2002},
     doi = {10.5802/aif.1900},
     zbl = {1041.11074},
     mrnumber = {1907386},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1900/}
}
TY  - JOUR
AU  - Greither, Cornelius
AU  - Kučera, Radiu
TI  - The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems
JO  - Annales de l'Institut Fourier
PY  - 2002
DA  - 2002///
SP  - 735
EP  - 777
VL  - 52
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1900/
UR  - https://zbmath.org/?q=an%3A1041.11074
UR  - https://www.ams.org/mathscinet-getitem?mr=1907386
UR  - https://doi.org/10.5802/aif.1900
DO  - 10.5802/aif.1900
LA  - en
ID  - AIF_2002__52_3_735_0
ER  - 
%0 Journal Article
%A Greither, Cornelius
%A Kučera, Radiu
%T The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems
%J Annales de l'Institut Fourier
%D 2002
%P 735-777
%V 52
%N 3
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1900
%R 10.5802/aif.1900
%G en
%F AIF_2002__52_3_735_0
Greither, Cornelius; Kučera, Radiu. The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems. Annales de l'Institut Fourier, Volume 52 (2002) no. 3, pp. 735-777. doi : 10.5802/aif.1900. https://aif.centre-mersenne.org/articles/10.5802/aif.1900/

[BF] D. Burns; M. Flach Equivariant Tamagawa numbers of motives (1998) (Preprint)

[BG] D. Burns; C. Greither On the equivariant Tamagawa number conjecture for Tate motives (submitted for publication) | Zbl

[Bu] D. Burns Equivariant Tamagawa numbers and Galois module theory I, Compositio Math., Volume 127 (2001), pp. 304-337 | MR | Zbl

[Deo] N. Deo Graph theory with applications to engineering and computer science, Prentice-Hall, Englewood Cliffs, 1974 | MR | Zbl

[GRW] K.-W. Gruenberg; J. Ritter; A. Weiss A local approach to Chinburg's root number formula, Proc. London Math. Soc. (3), Volume 79 (1999), pp. 47-80 | DOI | MR | Zbl

[GRW1] K.-W. Gruenberg; J. Ritter; A. Weiss On Chinburg's root number conjecture, Jbr. Dt. Math.-Vereinigung, Volume 100 (1998), pp. 36-44 | MR | Zbl

[Hu] J. Hurrelbrink Circulant graphs and 4-ranks of ideal class groups, Can. J. Math., Volume 46 (1994), pp. 169-183 | DOI | MR | Zbl

[Ka] P. W. Kasteleyn Graph theory and crystal physics, Graph theory and theoretical physics, Academic Press, New York, 1967 | MR | Zbl

[N] J. Neukirch Algebraic number theory, Grundlehren, vol. 322, Springer Verlag, New York, 1999 | MR | Zbl

[R] L. Rédei Arithmetischer Beweis des Satzes über die Anzahl der durch 4 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. reine angew. Math., Volume 171 (1935), pp. 55-60 | Zbl

[RR] L. Rédei; H. Reichardt Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. reine angew. Math., Volume 170 (1934), pp. 69-74 | DOI | Zbl

[Ru] K. Rubin; (combined second edition) by S. Lang The main conjecture, Cyclotomic fields I and II (GTM), Volume 121 (1990)

[RW] J. Ritter; A. Weiss The lifted root number conjecture for some cyclic extensions of , Acta Arithmetica, Volume XC.4 (1999), pp. 313-340 | MR | Zbl

[Tu] W. T. Tutte The dissection of equilateral triangles into equilateral triangles, Proc. Cambridge Phil. Soc, Volume 44 (1948), pp. 463-482 | DOI | MR | Zbl

Cited by Sources: