Let be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure is called -Zygmund if there exists a positive constant such that for any pair of adjacent cubes of the same size. Similarly, is called an - symmetric measure if there exists a positive constant such that for any pair of adjacent cubes of the same size, . We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic condition governs the existence of singular -Zygmund (-symmetric) measures. In the one- dimensional case, the results are well known, but complex analysis techniques are used at certain steps of the corresponding proofs.
Soit une fonction de jauge suffisamment régulière. On dit qu’une mesure signée sur est -Zygmund s’il existe une constante positive telle que pour chaque paire de cubes adjacents de même taille. De la même manière, on dit que est une mesure - symétrique s’il existe une constante positive telle que pour chaque paire de cubes adjacents de même taille, . Nous caractérisons les mesures de Zygmund et les mesures symétriques en termes de leurs extensions harmoniques. Nous montrons aussi que la condition quadratique commande l’existence de mesures -Zygmund (-symétriques) singulières. Le cas de la dimension un est bien connu, cependant les démonstrations correspondantes utilisent des techniques d’analyse complexe.
Keywords: doubling measures, Zygmund measures, harmonic extensions, quadratic condition
Mot clés : mesures doublantes, mesures de Zygmund, extensions harmoniques, condition quadratique
Doubtsov, Evgueni 1; Nicolau, Artur 2
@article{AIF_2002__52_1_153_0, author = {Doubtsov, Evgueni and Nicolau, Artur}, title = {Symmetric and {Zygmund} measures in several variables}, journal = {Annales de l'Institut Fourier}, pages = {153--177}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {1}, year = {2002}, doi = {10.5802/aif.1881}, zbl = {1037.31005}, mrnumber = {1881575}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1881/} }
TY - JOUR AU - Doubtsov, Evgueni AU - Nicolau, Artur TI - Symmetric and Zygmund measures in several variables JO - Annales de l'Institut Fourier PY - 2002 SP - 153 EP - 177 VL - 52 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1881/ DO - 10.5802/aif.1881 LA - en ID - AIF_2002__52_1_153_0 ER -
%0 Journal Article %A Doubtsov, Evgueni %A Nicolau, Artur %T Symmetric and Zygmund measures in several variables %J Annales de l'Institut Fourier %D 2002 %P 153-177 %V 52 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1881/ %R 10.5802/aif.1881 %G en %F AIF_2002__52_1_153_0
Doubtsov, Evgueni; Nicolau, Artur. Symmetric and Zygmund measures in several variables. Annales de l'Institut Fourier, Volume 52 (2002) no. 1, pp. 153-177. doi : 10.5802/aif.1881. https://aif.centre-mersenne.org/articles/10.5802/aif.1881/
[1] Inner functions, Bloch spaces and symmetric measures, Proc. London Math. Soc., Volume 79 (1999), pp. 318-352 | DOI | MR | Zbl
[2] Inner functions and cyclic vectors in the Bloch space, Trans. Amer. Math. Soc., Volume 323 (1991) no. 1, pp. 429-448 | DOI | MR | Zbl
[3] Bounded functions in the little Bloch space, Pacific J. Math., Volume 142 (1990), pp. 209-225 | MR | Zbl
[4] Intégrale d'aire et supports d'une mesure positive, C.R.A.S. Paris, Ser. I Math., Volume 296 (1983), pp. 231-232 | MR | Zbl
[5] On mappings, conformal at the boundary, J. d'Analyse Math., Volume 19 (1967), pp. 1-13 | DOI | MR | Zbl
[6] On removable singularities for the analytic Zygmund class, Michigan Math. J., Volume 43 (1996), pp. 51-65 | DOI | MR | Zbl
[7] Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv., Volume 60 (1985), pp. 217-246 | DOI | MR | Zbl
[8] Weighted Norm Inequalities and Related Topics, Math. Studies, 116, North-Holland, 1985 | MR | Zbl
[9] Singular measures and domains not of Smirnov type, Duke Math. J., Volume 33 (1966), pp. 247-254 | DOI | MR | Zbl
[10] The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math., Volume 134 (1991), pp. 65-124 | DOI | MR | Zbl
[11] Symmetric structures on a closed curve, American J. Math., Volume 114 (1992), pp. 683-736 | DOI | MR | Zbl
[12] Trois notes sur les ensembles parfaits linéaires, Enseignement Math., Volume 15 (1969), pp. 185-192 | MR | Zbl
[13] Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale approach, Potential Analysis, Volume 9 (1998), pp. 229-260 | DOI | MR | Zbl
[14] Probability methods in the theory of conformal mappings, Leningrad Math. J., Volume 1 (1990), pp. 1-56 | MR | Zbl
[15] Two monotonic, singular, uniformly almost smooth functions, Duke Math. J., Volume 33 (1966), pp. 255-262 | DOI | MR | Zbl
[16] Inner functions in the hyperbolic little Bloch class, Michigan Math. J., Volume 45 (1998) no. 1, pp. 103-114 | DOI | MR | Zbl
[17] Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970 | MR | Zbl
Cited by Sources: