Suppose is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold . The main result is that if the real analytic set of points at which is not strongly -convex is of dimension at most , then almost every sufficiently large sublevel of is strongly -convex as a complex manifold. For of dimension , this is a special case of a theorem of Diederich and Ohsawa. A version for real analytic with corners is also obtained.
On suppose que est une fonction analytique-réelle plurisousharmonique sur une variété complexe connexe et non-compacte . Le résultat principal démontre que si l’ensemble analytique-réel des points où n’est pas fortement -convexe est de dimension ou moins, alors presque tous les sous-niveaux assez grands de sont des variétés complexes fortement -convexes. Pour de dimension 2, c’est un cas spécial d’un théorème de Diederich et Ohsawa. Nous obtenons aussi une version de ce résultat dans le cas où est analytique réelle avec coins.
Keywords: analytic cycles, holomorphically convex, $q$-complete
Mot clés : cycles analytiques, convexe holomorphiquement, $q$ complet
@article{AIF_2001__51_6_1553_0, author = {Napier, Terrence and Ramachandran, Mohan}, title = {Generically strongly $q$-convex complex manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1553--1598}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {6}, year = {2001}, doi = {10.5802/aif.1866}, zbl = {0996.32004}, mrnumber = {1870640}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1866/} }
TY - JOUR AU - Napier, Terrence AU - Ramachandran, Mohan TI - Generically strongly $q$-convex complex manifolds JO - Annales de l'Institut Fourier PY - 2001 SP - 1553 EP - 1598 VL - 51 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1866/ DO - 10.5802/aif.1866 LA - en ID - AIF_2001__51_6_1553_0 ER -
%0 Journal Article %A Napier, Terrence %A Ramachandran, Mohan %T Generically strongly $q$-convex complex manifolds %J Annales de l'Institut Fourier %D 2001 %P 1553-1598 %V 51 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1866/ %R 10.5802/aif.1866 %G en %F AIF_2001__51_6_1553_0
Napier, Terrence; Ramachandran, Mohan. Generically strongly $q$-convex complex manifolds. Annales de l'Institut Fourier, Volume 51 (2001) no. 6, pp. 1553-1598. doi : 10.5802/aif.1866. https://aif.centre-mersenne.org/articles/10.5802/aif.1866/
[Ba1] Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Séminaire F. Norguet : Fonctions de plusieurs variables complexes 1974/75 (Lecture Notes in Math.), Volume vol. 482 (1975), pp. 1-158 | Zbl
[Ba2] Convexité de l'espace des cycles, Bull. Soc. Math. France, Volume 106 (1978), pp. 373-397 | Numdam | MR | Zbl
[Bi] Conditions for the analyticity of certain sets, Michigan Math. J., Volume 11 (1964), pp. 289-304 | DOI | MR | Zbl
[BrC1] Sur la structure des sous-ensembles analytiques-réels, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 988-990 | MR | Zbl
[BrC2] Sur les composantes irréductibles d'un sous-ensemble analytique-réel, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 1123-1126 | MR | Zbl
[BrW] Quelque propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helv., Volume 33 (1959), pp. 132-160 | DOI | MR | Zbl
[Cam] Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, Volume 122 (1994) no. 2, pp. 255-284 | Numdam | MR | Zbl
[Car] Quotients of complex analytic spaces, Contributions to function theory, Internat. colloq. function theory, Tata Inst. of Fundamental Research, Bombay (1960) | Zbl
[Co] Complete locally pluripolar sets, J. reine and angew. Math., Volume 412 (1990), pp. 108-112 | DOI | MR | Zbl
[De1] Estimations pour l'opérateur d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. Ecole Norm. Sup., Volume 15 (1982), pp. 457-511 | Numdam | MR | Zbl
[De2] Cohomology of q-convex spaces in top degrees, Math. Z., Volume 204 (1990), pp. 283-295 | DOI | MR | Zbl
[DiF1] Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math., Volume 39 (1977), pp. 129-141 | DOI | MR | Zbl
[DiF2] Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J., Volume 44 (1977), pp. 641-662 | DOI | MR | Zbl
[DiF3] Pseudoconvex domains with real-analytic boundary, Ann. Math., Volume 107 (1978), pp. 371-384 | DOI | MR | Zbl
[DiO] A Levi problem on two-dimensional complex manifolds, Math. Ann., Volume 261 (1982), pp. 255-261 | DOI | MR | Zbl
[DoG] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., Volume 140 (1960), pp. 94-123 | DOI | MR | Zbl
[Fr] Local complex foliation of real submanifolds, Math. Ann., Volume 209 (1974), pp. 1-30 | DOI | MR | Zbl
[Fu] Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci., Volume 14 (1978/79) no. 1, pp. 1-52 | DOI | MR | Zbl
[G] On Levi's problem and the imbedding of real analytic manifolds, Ann. Math., Volume 68 (1958), pp. 460-472 | DOI | MR | Zbl
[GR] Kählersche Mannigfältigkeiten mit hyper-q-konvexen Rand, Problems in analysis (A Symposium in Honor of S. Bochner, Princeton 1969) (1970), pp. 61-79 | Zbl
[GW] Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), Volume 25 (1975) no. 1, pp. 215-235 | DOI | Numdam | MR | Zbl
[HM] Plurisubharmonic functions and a generalized Dirichlet problem, Mich. Math. J, Volume 25 (1978), pp. 299-316 | DOI | MR | Zbl
[Hu] The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex, Math. Ann., Volume 219 (1976), pp. 127-137 | DOI | MR | Zbl
[L] Sulle funzione di due o più variabli complesse, Rend. Accad. Naz. Lincei. V, Volume 14 (1905), pp. 492-499
[Na] Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S., Kyoto, Volume 10 (1974), pp. 101-110 | DOI | MR | Zbl
[NR1] Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal., Volume 5 (1995), pp. 809-851 | DOI | MR | Zbl
[NR2] The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds, Ann. Inst. Fourier (Grenoble), Volume 47 (1997) no. 5, pp. 1345-1365 | DOI | Numdam | MR | Zbl
[Ns] The Levi problem for complex spaces II, Math. Ann., Volume 146 (1962), pp. 195-216 | DOI | MR | Zbl
[O] Completeness of noncompact analytic spaces, Publ. R.I.M.S., Kyoto, Volume 20 (1984), pp. 683-692 | DOI | MR | Zbl
[Re] Reduction of complex spaces, Seminars on analytic functions, Inst. for Advanced Study, Princeton (1957) | Zbl
[Ri] Stetige streng pseudokonvexe Funktionen, Math. Ann., Volume 175 (1968), pp. 257-286 | DOI | MR | Zbl
[Si1] Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976), pp. 89-100 | DOI | MR | Zbl
[Si2] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Volume 17 (1982), pp. 55-138 | MR | Zbl
[Ste] Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Séminaire Pierre Lelong (Analyse), Séminaire Pierre Lelong (Analyse), Année 1973--1974 (Lect. Notes in Math.), Volume vol. 474 (1975), pp. 155-179 | Zbl
[Sto] The fiber integral is constant, Math. Zeitsch., Volume 104 (1968), pp. 65-73 | DOI | MR | Zbl
[Wu] On certain Kähler manifolds which are -complete, Complex analysis of Several Variables (Proceedings of Symposia in Pure Mathematics), Volume vol. 41 (1984), pp. 253-276 | Zbl
Cited by Sources: