Universal functions on nonsimply connected domains
Annales de l'Institut Fourier, Volume 51 (2001) no. 6, pp. 1539-1551.

We establish certain properties for the class 𝒰(Ω,ζ 0 ) of universal functions in Ω with respect to the center ζ 0 Ω, for certain types of connected non-simply connected domains Ω. In the case where /Ω is discrete we prove that this class is G δ -dense in H(Ω), depends on the center ζ 0 and that the analog of Kahane’s conjecture does not hold.

Dans le cas de certains domaines non simplement connexes, nous établissons l'existence et la résidualité de fonctions universelles par rapport à un centre. Nous examinons aussi l'analogue de la conjecture de Kahane.

DOI: 10.5802/aif.1865
Classification: 30B30, 30B10
Keywords: power series, overconvergence, complex approximation
Mot clés : séries de puissance, approximation complexe, propriété générique
Melas, Antonios D. 1

1 University of Athens, Department of Mathematics, Panepistimiopolis 157-84, Athens (Greece)
@article{AIF_2001__51_6_1539_0,
     author = {Melas, Antonios D.},
     title = {Universal functions on nonsimply connected domains},
     journal = {Annales de l'Institut Fourier},
     pages = {1539--1551},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {51},
     number = {6},
     year = {2001},
     doi = {10.5802/aif.1865},
     zbl = {0989.30003},
     mrnumber = {1870639},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1865/}
}
TY  - JOUR
AU  - Melas, Antonios D.
TI  - Universal functions on nonsimply connected domains
JO  - Annales de l'Institut Fourier
PY  - 2001
SP  - 1539
EP  - 1551
VL  - 51
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1865/
DO  - 10.5802/aif.1865
LA  - en
ID  - AIF_2001__51_6_1539_0
ER  - 
%0 Journal Article
%A Melas, Antonios D.
%T Universal functions on nonsimply connected domains
%J Annales de l'Institut Fourier
%D 2001
%P 1539-1551
%V 51
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1865/
%R 10.5802/aif.1865
%G en
%F AIF_2001__51_6_1539_0
Melas, Antonios D. Universal functions on nonsimply connected domains. Annales de l'Institut Fourier, Volume 51 (2001) no. 6, pp. 1539-1551. doi : 10.5802/aif.1865. https://aif.centre-mersenne.org/articles/10.5802/aif.1865/

[1] G. Costakis Some remarks on universal functions and Taylor series, Math. Proc. of the Cambr. Phil. Soc., Volume 128 (2000), pp. 157-175 | DOI | MR | Zbl

[2] K.-G. Grosse-Erdmann Universal families and hypercyclic operators, Bull. of the AMS, Volume 36 (1999) no. 3, pp. 345-381 | DOI | MR | Zbl

[3] J.-P. Kahane Baire's category Theorem and Trigonometric series, Jour. Anal. Math., Volume 80 (2000), pp. 143-182 | DOI | MR | Zbl

[4] W. Luh Universal approximation properties of overconvergent power series on open sets, Analysis, Volume 6 (1986), pp. 191-207 | MR | Zbl

[5] A. Melas; V. Nestoridis Universality of Taylor series as a generic property of holomorphic functions, Adv. in Math., Volume 157 (2001) no. 2, pp. 138-176 | DOI | MR | Zbl

[6] V. Nestoridis Universal Taylor series, Ann. Inst. Fourier, (Grenoble), Volume 46 (1996) no. 5, pp. 1293-1306 | DOI | Numdam | MR | Zbl

[7] V. Nestoridis An extension of the notion of universal Taylor series, Proceedings CMFT'97, Nicosia, Cyprus, Oct. (1997) | Zbl

[8] V. Vlachou A universal Taylor series in the doubly connected domain {1} (Submitted) | Zbl

Cited by Sources: