We establish certain properties for the class of universal functions in with respect to the center , for certain types of connected non-simply connected domains . In the case where is discrete we prove that this class is -dense in , depends on the center and that the analog of Kahane’s conjecture does not hold.
Dans le cas de certains domaines non simplement connexes, nous établissons l'existence et la résidualité de fonctions universelles par rapport à un centre. Nous examinons aussi l'analogue de la conjecture de Kahane.
Keywords: power series, overconvergence, complex approximation
Mot clés : séries de puissance, approximation complexe, propriété générique
@article{AIF_2001__51_6_1539_0, author = {Melas, Antonios D.}, title = {Universal functions on nonsimply connected domains}, journal = {Annales de l'Institut Fourier}, pages = {1539--1551}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {6}, year = {2001}, doi = {10.5802/aif.1865}, zbl = {0989.30003}, mrnumber = {1870639}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1865/} }
TY - JOUR AU - Melas, Antonios D. TI - Universal functions on nonsimply connected domains JO - Annales de l'Institut Fourier PY - 2001 SP - 1539 EP - 1551 VL - 51 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1865/ DO - 10.5802/aif.1865 LA - en ID - AIF_2001__51_6_1539_0 ER -
%0 Journal Article %A Melas, Antonios D. %T Universal functions on nonsimply connected domains %J Annales de l'Institut Fourier %D 2001 %P 1539-1551 %V 51 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1865/ %R 10.5802/aif.1865 %G en %F AIF_2001__51_6_1539_0
Melas, Antonios D. Universal functions on nonsimply connected domains. Annales de l'Institut Fourier, Volume 51 (2001) no. 6, pp. 1539-1551. doi : 10.5802/aif.1865. https://aif.centre-mersenne.org/articles/10.5802/aif.1865/
[1] Some remarks on universal functions and Taylor series, Math. Proc. of the Cambr. Phil. Soc., Volume 128 (2000), pp. 157-175 | DOI | MR | Zbl
[2] Universal families and hypercyclic operators, Bull. of the AMS, Volume 36 (1999) no. 3, pp. 345-381 | DOI | MR | Zbl
[3] Baire's category Theorem and Trigonometric series, Jour. Anal. Math., Volume 80 (2000), pp. 143-182 | DOI | MR | Zbl
[4] Universal approximation properties of overconvergent power series on open sets, Analysis, Volume 6 (1986), pp. 191-207 | MR | Zbl
[5] Universality of Taylor series as a generic property of holomorphic functions, Adv. in Math., Volume 157 (2001) no. 2, pp. 138-176 | DOI | MR | Zbl
[6] Universal Taylor series, Ann. Inst. Fourier, (Grenoble), Volume 46 (1996) no. 5, pp. 1293-1306 | DOI | Numdam | MR | Zbl
[7] An extension of the notion of universal Taylor series, Proceedings CMFT'97, Nicosia, Cyprus, Oct. (1997) | Zbl
[8] A universal Taylor series in the doubly connected domain (Submitted) | Zbl
Cited by Sources: