Generically strongly q-convex complex manifolds
[Variétés complexes génériquement fortement q-convexes]
Annales de l'Institut Fourier, Tome 51 (2001) no. 6, pp. 1553-1598.

On suppose que ϕ est une fonction analytique-réelle plurisousharmonique sur une variété complexe connexe et non-compacte X. Le résultat principal démontre que si l’ensemble analytique-réel des points où ϕ n’est pas fortement q-convexe est de dimension 2q+1 ou moins, alors presque tous les sous-niveaux assez grands de ϕ sont des variétés complexes fortement q-convexes. Pour X de dimension 2, c’est un cas spécial d’un théorème de Diederich et Ohsawa. Nous obtenons aussi une version de ce résultat dans le cas où ϕ est analytique réelle avec coins.

Suppose ϕ is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold X. The main result is that if the real analytic set of points at which ϕ is not strongly q-convex is of dimension at most 2q+1, then almost every sufficiently large sublevel of ϕ is strongly q-convex as a complex manifold. For X of dimension 2, this is a special case of a theorem of Diederich and Ohsawa. A version for ϕ real analytic with corners is also obtained.

DOI : 10.5802/aif.1866
Classification : 32E40, 32F10
Keywords: analytic cycles, holomorphically convex, $q$-complete
Mot clés : cycles analytiques, convexe holomorphiquement, $q$ complet

Napier, Terrence 1 ; Ramachandran, Mohan 2

1 Lehigh University, Department of Mathematics, Bethlehem PA 18015 (USA)
2 SUNY at Buffalo, Department of Mathematics, Buffalo NY 14214 (USA)
@article{AIF_2001__51_6_1553_0,
     author = {Napier, Terrence and Ramachandran, Mohan},
     title = {Generically strongly $q$-convex complex manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1553--1598},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {51},
     number = {6},
     year = {2001},
     doi = {10.5802/aif.1866},
     zbl = {0996.32004},
     mrnumber = {1870640},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1866/}
}
TY  - JOUR
AU  - Napier, Terrence
AU  - Ramachandran, Mohan
TI  - Generically strongly $q$-convex complex manifolds
JO  - Annales de l'Institut Fourier
PY  - 2001
SP  - 1553
EP  - 1598
VL  - 51
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1866/
DO  - 10.5802/aif.1866
LA  - en
ID  - AIF_2001__51_6_1553_0
ER  - 
%0 Journal Article
%A Napier, Terrence
%A Ramachandran, Mohan
%T Generically strongly $q$-convex complex manifolds
%J Annales de l'Institut Fourier
%D 2001
%P 1553-1598
%V 51
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1866/
%R 10.5802/aif.1866
%G en
%F AIF_2001__51_6_1553_0
Napier, Terrence; Ramachandran, Mohan. Generically strongly $q$-convex complex manifolds. Annales de l'Institut Fourier, Tome 51 (2001) no. 6, pp. 1553-1598. doi : 10.5802/aif.1866. https://aif.centre-mersenne.org/articles/10.5802/aif.1866/

[Ba1] D. Barlet Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Séminaire F. Norguet : Fonctions de plusieurs variables complexes 1974/75 (Lecture Notes in Math.), Volume vol. 482 (1975), pp. 1-158 | Zbl

[Ba2] D. Barlet Convexité de l'espace des cycles, Bull. Soc. Math. France, Volume 106 (1978), pp. 373-397 | Numdam | MR | Zbl

[Bi] E. Bishop Conditions for the analyticity of certain sets, Michigan Math. J., Volume 11 (1964), pp. 289-304 | DOI | MR | Zbl

[BrC1] F. Bruhat; H. Cartan Sur la structure des sous-ensembles analytiques-réels, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 988-990 | MR | Zbl

[BrC2] F. Bruhat; H. Cartan Sur les composantes irréductibles d'un sous-ensemble analytique-réel, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 1123-1126 | MR | Zbl

[BrW] F. Bruhat; H. Whitney Quelque propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helv., Volume 33 (1959), pp. 132-160 | DOI | MR | Zbl

[Cam] F. Campana Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, Volume 122 (1994) no. 2, pp. 255-284 | Numdam | MR | Zbl

[Car] H. Cartan Quotients of complex analytic spaces, Contributions to function theory, Internat. colloq. function theory, Tata Inst. of Fundamental Research, Bombay (1960) | Zbl

[Co] M. Coltoiu Complete locally pluripolar sets, J. reine and angew. Math., Volume 412 (1990), pp. 108-112 | DOI | MR | Zbl

[De1] J.-P. Demailly Estimations L 2 pour l'opérateur ¯ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. Ecole Norm. Sup., Volume 15 (1982), pp. 457-511 | Numdam | MR | Zbl

[De2] J.-P. Demailly Cohomology of q-convex spaces in top degrees, Math. Z., Volume 204 (1990), pp. 283-295 | DOI | MR | Zbl

[DiF1] K. Diederich; J. E. Fornaess Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math., Volume 39 (1977), pp. 129-141 | DOI | MR | Zbl

[DiF2] K. Diederich; J. E. Fornaess Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J., Volume 44 (1977), pp. 641-662 | DOI | MR | Zbl

[DiF3] K. Diederich; J. E. Fornaess Pseudoconvex domains with real-analytic boundary, Ann. Math., Volume 107 (1978), pp. 371-384 | DOI | MR | Zbl

[DiO] K. Diederich; T. Ohsawa A Levi problem on two-dimensional complex manifolds, Math. Ann., Volume 261 (1982), pp. 255-261 | DOI | MR | Zbl

[DoG] F. Docquier; H. Grauert Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., Volume 140 (1960), pp. 94-123 | DOI | MR | Zbl

[Fr] M. Freeman Local complex foliation of real submanifolds, Math. Ann., Volume 209 (1974), pp. 1-30 | DOI | MR | Zbl

[Fu] A. Fujiki Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci., Volume 14 (1978/79) no. 1, pp. 1-52 | DOI | MR | Zbl

[G] H. Grauert On Levi's problem and the imbedding of real analytic manifolds, Ann. Math., Volume 68 (1958), pp. 460-472 | DOI | MR | Zbl

[GR] H. Grauert; O. Riemeschneider Kählersche Mannigfältigkeiten mit hyper-q-konvexen Rand, Problems in analysis (A Symposium in Honor of S. Bochner, Princeton 1969) (1970), pp. 61-79 | Zbl

[GW] R. Greene; H. Wu Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), Volume 25 (1975) no. 1, pp. 215-235 | DOI | Numdam | MR | Zbl

[HM] L.R. Hunt; J.J. Murray Plurisubharmonic functions and a generalized Dirichlet problem, Mich. Math. J, Volume 25 (1978), pp. 299-316 | DOI | MR | Zbl

[Hu] A. Huckleberry The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex, Math. Ann., Volume 219 (1976), pp. 127-137 | DOI | MR | Zbl

[L] T. Levi-Civita Sulle funzione di due o più variabli complesse, Rend. Accad. Naz. Lincei. V, Volume 14 (1905), pp. 492-499

[Na] S. Nakano Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S., Kyoto, Volume 10 (1974), pp. 101-110 | DOI | MR | Zbl

[NR1] T. Napier; M. Ramachandran Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal., Volume 5 (1995), pp. 809-851 | DOI | MR | Zbl

[NR2] T. Napier; M. Ramachandran The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds, Ann. Inst. Fourier (Grenoble), Volume 47 (1997) no. 5, pp. 1345-1365 | DOI | Numdam | MR | Zbl

[Ns] R. Narasimhan The Levi problem for complex spaces II, Math. Ann., Volume 146 (1962), pp. 195-216 | DOI | MR | Zbl

[O] T. Ohsawa Completeness of noncompact analytic spaces, Publ. R.I.M.S., Kyoto, Volume 20 (1984), pp. 683-692 | DOI | MR | Zbl

[Re] R. Remmert Reduction of complex spaces, Seminars on analytic functions, Inst. for Advanced Study, Princeton (1957) | Zbl

[Ri] R. Richberg Stetige streng pseudokonvexe Funktionen, Math. Ann., Volume 175 (1968), pp. 257-286 | DOI | MR | Zbl

[Si1] Y.-T. Siu Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976), pp. 89-100 | DOI | MR | Zbl

[Si2] Y.-T. Siu Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Volume 17 (1982), pp. 55-138 | MR | Zbl

[Ste] J.-L. Stehlé Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Séminaire Pierre Lelong (Analyse), Séminaire Pierre Lelong (Analyse), Année 1973--1974 (Lect. Notes in Math.), Volume vol. 474 (1975), pp. 155-179 | Zbl

[Sto] W. Stoll The fiber integral is constant, Math. Zeitsch., Volume 104 (1968), pp. 65-73 | DOI | MR | Zbl

[Wu] H. Wu On certain Kähler manifolds which are q-complete, Complex analysis of Several Variables (Proceedings of Symposia in Pure Mathematics), Volume vol. 41 (1984), pp. 253-276 | Zbl

Cité par Sources :