[Fonctions universelles dans des domaines non simplement connexes]
Dans le cas de certains domaines non simplement connexes, nous établissons l'existence et la résidualité de fonctions universelles par rapport à un centre. Nous examinons aussi l'analogue de la conjecture de Kahane.
We establish certain properties for the class of universal functions in with respect to the center , for certain types of connected non-simply connected domains . In the case where is discrete we prove that this class is -dense in , depends on the center and that the analog of Kahane’s conjecture does not hold.
Keywords: power series, overconvergence, complex approximation
Mot clés : séries de puissance, approximation complexe, propriété générique
Melas, Antonios D. 1
@article{AIF_2001__51_6_1539_0, author = {Melas, Antonios D.}, title = {Universal functions on nonsimply connected domains}, journal = {Annales de l'Institut Fourier}, pages = {1539--1551}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {6}, year = {2001}, doi = {10.5802/aif.1865}, zbl = {0989.30003}, mrnumber = {1870639}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1865/} }
TY - JOUR AU - Melas, Antonios D. TI - Universal functions on nonsimply connected domains JO - Annales de l'Institut Fourier PY - 2001 SP - 1539 EP - 1551 VL - 51 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1865/ DO - 10.5802/aif.1865 LA - en ID - AIF_2001__51_6_1539_0 ER -
%0 Journal Article %A Melas, Antonios D. %T Universal functions on nonsimply connected domains %J Annales de l'Institut Fourier %D 2001 %P 1539-1551 %V 51 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1865/ %R 10.5802/aif.1865 %G en %F AIF_2001__51_6_1539_0
Melas, Antonios D. Universal functions on nonsimply connected domains. Annales de l'Institut Fourier, Tome 51 (2001) no. 6, pp. 1539-1551. doi : 10.5802/aif.1865. https://aif.centre-mersenne.org/articles/10.5802/aif.1865/
[1] Some remarks on universal functions and Taylor series, Math. Proc. of the Cambr. Phil. Soc., Volume 128 (2000), pp. 157-175 | DOI | MR | Zbl
[2] Universal families and hypercyclic operators, Bull. of the AMS, Volume 36 (1999) no. 3, pp. 345-381 | DOI | MR | Zbl
[3] Baire's category Theorem and Trigonometric series, Jour. Anal. Math., Volume 80 (2000), pp. 143-182 | DOI | MR | Zbl
[4] Universal approximation properties of overconvergent power series on open sets, Analysis, Volume 6 (1986), pp. 191-207 | MR | Zbl
[5] Universality of Taylor series as a generic property of holomorphic functions, Adv. in Math., Volume 157 (2001) no. 2, pp. 138-176 | DOI | MR | Zbl
[6] Universal Taylor series, Ann. Inst. Fourier, (Grenoble), Volume 46 (1996) no. 5, pp. 1293-1306 | DOI | Numdam | MR | Zbl
[7] An extension of the notion of universal Taylor series, Proceedings CMFT'97, Nicosia, Cyprus, Oct. (1997) | Zbl
[8] A universal Taylor series in the doubly connected domain (Submitted) | Zbl
Cité par Sources :