In this paper we prove the implicit function theorem for locally blow-analytic functions, and as an interesting application of using blow-analytic homeomorphisms, we describe a very easy way to resolve singularities of analytic curves.
Nous montrons le théorème des fonctions implicites pour les fonctions localement "blow- analytiques" et, comme application de l'utilisation des homéomorphismes "blow- analytiques", nous donnons une méthode très facile pour résoudre les singularités des courbes analytiques.
Keywords: blow-analytic, arc-analytic
Mot clés : blow-analytique, arc-analytique
Paunescu, Laurentiu 1
@article{AIF_2001__51_4_1089_0, author = {Paunescu, Laurentiu}, title = {Implicit function theorem for locally blow-analytic functions}, journal = {Annales de l'Institut Fourier}, pages = {1089--1100}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {4}, year = {2001}, doi = {10.5802/aif.1846}, zbl = {0996.58008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1846/} }
TY - JOUR AU - Paunescu, Laurentiu TI - Implicit function theorem for locally blow-analytic functions JO - Annales de l'Institut Fourier PY - 2001 SP - 1089 EP - 1100 VL - 51 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1846/ DO - 10.5802/aif.1846 LA - en ID - AIF_2001__51_4_1089_0 ER -
%0 Journal Article %A Paunescu, Laurentiu %T Implicit function theorem for locally blow-analytic functions %J Annales de l'Institut Fourier %D 2001 %P 1089-1100 %V 51 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1846/ %R 10.5802/aif.1846 %G en %F AIF_2001__51_4_1089_0
Paunescu, Laurentiu. Implicit function theorem for locally blow-analytic functions. Annales de l'Institut Fourier, Volume 51 (2001) no. 4, pp. 1089-1100. doi : 10.5802/aif.1846. https://aif.centre-mersenne.org/articles/10.5802/aif.1846/
[1] Invariant varieties through singularities of holomorphic vector fields, Annals of Math., Volume 115 (1982) | MR | Zbl
[1] Arc-analytic functions, Invent. Math., Volume 101 (1990), pp. 411-424 | DOI | MR | Zbl
[2] Blow-analytic equisingularities, properties, problems and progress, Real analytic and algebraic singularities (Pitman Research Notes in Mathematics Series), Volume 381 (1997), pp. 8-29 | Zbl
[3] Constructing blow-analytic homeomorphisms (Submitted)
[4] Introduction to real-analytic sets and real-analytic maps, Quaderni dei Gruppi di Ricerca Matematica del Consiglio Nazionale delle Ricerche (1973)
[5] On Blow-analytic equivalence of embedded curve singularities, Real analytic and algebraic singularities (Pitman Research Notes in Mathematics Series), Volume 381 (1997), pp. 30-37 | Zbl
[6] The modified analytic trivialization of singularities, J. Math. Soc. Japan, Volume 32 (1980), pp. 605-614 | DOI | MR | Zbl
[7] On classification of real singularities, Invent. Math., Volume 82 (1985), pp. 257-262 | DOI | MR | Zbl
[8] A Theorem on almost analytic equisingularity, J. Math. Soc. Japan, Volume 33 (1981), pp. 471-484 | DOI | MR | Zbl
[9] Ensembles semi-algébriques symétriques par arcs, Math. Ann., Volume 282 (1988), pp. 445-462 | DOI | MR | Zbl
[10] Points réguliers d'un sous-analytique, Ann. Inst. Fourier, Grenoble, Volume 38 (1988) no. 1, pp. 133-156 | DOI | Numdam | MR | Zbl
[11] Subanalytic Functions, Trans. of the A.M.S, Volume 344 (1994) no. 2, pp. 583-595 | DOI | Zbl
[12] Lipschitz stratification of subanalytic sets, Ann. École Norm. Sup., Volume tome 27 (1994) no. 6, pp. 661-696 | Numdam | MR | Zbl
[13] An example of blow-analytic homeomorphism, Real analytic and algebraic singularities (Pitman Research Notes in Mathematics Series), Volume 381 (1997), pp. 62-63 | Zbl
Cited by Sources: