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IMPLICIT FUNCTION THEOREM FOR

LOCALLY BLOW-ANALYTIC FUNCTIONS

by Laurentiu PAUNESCU

Ann. Inst. Fourier, Grenoble
51, 4 (2001), 1089-1100

1. Blow-analytic category.

In this work we continue the study started in [3], describing new
properties of the blow-analytic maps and finding criteria for blow-analytic
homeomorphisms. This paper generalises to arbitrary modifications, some
of the results in [3] where we treat mostly the case of toric modifications.
Here we enlarge our category to local blow-analytic functions allowing in
this way apparently a larger class of modifications (see for instance [12],
[11], [1] for locally blow-analytic functions, and [2], [7], [6], [8] for blow-

analytic functions). The author thanks T. Fukui, T-C. Kuo, K. Kurdyka
and A. Parusifiski for valuable discussions and also the referee for useful

comments.

The main difficulty concerning the blow-analytic category, as far as
calculus is concern, comes from the facts that it is closed neither under

differentiation nor under integration, and also there is no global chain rule.

For the reader’s convenience we recall here the basic notions related

to the blow-analytic category.

Let U be a neighbourhood of the origin of R’, M a real analytic
manifold and 7r : M --+ U be a proper analytic real modification whose
complexification (see [4]) is also a proper modification (we often simply say

Keywords: Blow-analytic - Arc-analytic.
Math. classification: 58C05 - 58K99 - 14Pxx.
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that "7r is a modification" ) . For instance x -4 x3 is not a modification in
our sense.

Let f : U 2013~ R’ denote a map defined on U except possibly some
thin subset of U. In this case, we shall simply say that f is defined almost
everywhere. From now on if we do not use dashed arrows we understand
that the map is defined everywhere. We say that f is blow-analytic via 7r
if f o 7r has an analytic extension on M.

We say that f is blow-analytic if it does so via some modification. It
will follow that blow-analytic maps are analytic outside a thin set.

Some typical examples of blow-analytic functions are the following:

which is defined everywhere except the origin, and

which can be extended continuously everywhere.

We say that f is blow-meromorphic via 7r if f o 7r can be written as a
meromorphic map on M.

We say that f is blow-meromorphic if it does so via some modification.
It will follow that blow-meromorphic maps are analytic except a thin set.

Let P be a function defined almost everywhere on U.

We say that P is a blow-analytic unit via a modification 7r : M - U,
if P o 7r extends to an analytic function on M, which is a unit as an analytic
function. It will follow that P and 1/P are bounded away from zero and
also P has constant sign.

We say that f is locally blow-analytic via a locally finite collection of
analytic modifications UX - if for each a we have

(i) aa is the composition of finitely many local blowings-up with
smooth nowhere dense centres and f o a a has an analytic extension on 

(ii) There are subanalytic compact subsets K~ C Ua such that
= U.

Let Ul, U2 be two neighbourhoods of the origin of R~. We say
that h : Ul -4 U2 is a blow-analytic homeomorphism if h : Ul -4 U2
is a homeomorphism and there is an analytic isomorphism of pairs H :

(Mi, Ei) - (M2, E2) so that h o 7rl - 7r2 0 H for some modifications
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Jrz : Mz - Ui, i - 1, 2, where Ei (as analytic spaces) denote the critical
loci of Jrz, i = 1, 2. If there is a modification-germ 7r : (M, 1r-l (0)) -

such that 1rl, 7r2 are its representatives, we call h a blow-analytic
homeomorphism (-germ) via 7r.

Let Ul, U2 be two neighbourhoods of the origin of R~ and RP

respectively, and consider f : Ul --~ U2 a map defined on Ul except possibly
some thin subset of Ul.

We say that f has the arc-lifting-property (alp for short) if by
definition, for any given analytic arc a : (R,0) --~ (U2, 0) there exists an
analytic arc (3 : (R, 0) -~ (Ul, 0), such that we have f o,3 - a. If f has alp
then clearly f must be surjective.

The importance of this notion in our set-up is justified by the fact that
a blow-analytic map h : U, --+ U2, (Ul, U2 neighbourhoods of the origin in
R’), which is also a homeomorphism, is a blow-analytic homeomorphism
if and only if it has alp (at least in the semi-algebraic case, [1]).

Note that in the case when f is a finite analytic map we have alp if
and only if each fibre of f contains at least one point where its jacobian
matrix has maximal rank.

Remark - The notion of (locally) blow-analytic functions (or
map) is very much related to the notion of arc-analytic function introduced
in [10]. These are functions f : U - R such that f o a is analytic for any
analytic arc a : I --+ U (where U is an open subset of and I is an open
interval. Indeed in [1] it is proved in particular that an arc-analytic function
has sub-analytic graph if and only if it is locally blow-analytic. It is clear
that if f is blow-analytic in our sense then it is automatically arc-analytic
with respect to the analytic arcs not contained in the set where f is not
defined.

As we have already mentioned, the main difficulty concerning blow-
analytic category, as far as calculus is concern, comes from the facts that
it is closed neither under differentiation nor under integration, and also
there is no global chain rule. For instance the following blow-analytic
homeomorphism has its jacobian matrix with all entries non arc-analytic
functions (so all the partial derivatives of its components are no longer in
the category).

Example 1.2. - Let h : (JR3, C) -4 (R 3, C) be the map-germ defined
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by

where and C is the z-axis.

2. Blow-analytic homeomorphisms.

Let U be an open neighbourhood of the origin in R~ and let f : U - R
be an arc-analytic function. It is easy to see that at each point of U we
have well defined partial derivatives. However, in general, they are no longer
arc-analytic functions. If moreover f is a blow-analytic function, then it is
clear that its partial derivatives are analytic except on a thin set. In fact
we have even more.

LEMMA 2.1. - Let U be an open neighbourhood of the origin
in R~ and f : U --+ R be a blow-analytic function via a modification
7T : (M, E) - (U, C), where E is the critical locus of 7r. Then the partial
derivatives are blow-meromorphic via 7r.

Proof. Let h = f o 7r denote the function obtained by composing
f and 7r. By assumption h is analytic. Using the chain rule (outside C) we
deduce that grad(h)(X) where X represents some
local coordinate system in M B E. From this we can solve

(where d7r* represents the adjoint matrix of Actually with more care
one can prove that grad( f ) (x) - where g is a blow-analytic map via
7r on U and p is an analytic function on U. Indeed, by performing extra
blowing-up if necessary, we may assume that locally the components of 7r
and det are monomials (modulo analytic units), I so we can find a
polynomial p(x) such that is analytic in X. This in turn will give
us that g(x) = p(x) ~ grad f(x) is blow-analytic via 7r. a

Remark 2.2. - Note that even if the meromorphic function obtained
in this way is defined at some points in E then may not

coincide with the value calculated using the definition at those points. This
is true in general for blow-meromorphic maps defined globally on U. We do
not expect that the preexisting values of our map outside the analyticity
set will coincide with those possible extra values coming from blowing-up.
The next example will make this clear.
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Exam pl e 2.3. -

defined by
be a map-germ

where and C is the z-axis.

This map is a blow-analytic homeomorphism and therefore its differ-
ential dh is well defined at every point and so is its jacobian determinant.
An easy direct computation shows that az vanishes at the origin. How-
ever, the jacobian determinant is equal to 1 outside a thin set, so it is a

blow-analytic unit in our sense.

Let h : (R’, C) --+ h(C)) be a germ of a blow-analytic map.
It is interesting to look at the eigenvalues and the eigenvectors of its ja-
cobian matrix. It turns out, once again, that the situation is quite com-

plicated. There are blow-analytic homeomorphisms such that the corre-
sponding eigenvalues are not blow-analytic (not even arc-analytic). Here
we understand also the case of complex eigenvalues which we treat compo-
nentwise. Naturally we have the same bad behaviour for the eigenvectors.

For a given continuous subanalytic map germ h : (R~,0) -~ (R’, 0)
we would like to decide when it is a blow-analytic homeomorphism via a
modification 7r. Here 7r : M -~ is a modification whose critical locus

is normal crossing. Let us consider ft : (I~n, 0) - (R’, 0), 0 , t ~ 1, a
continuous family of subanalytic maps such that fi = h and f o is a blow

analytic homeomorphism via 7r. We put F(x; t) = (Fl (x; t), ..., Fn (x; t)) -

The vector field ~, defined formally by

trivializes the family f t whenever defined (where dx( ft) stands for the
jacobian matrix of f and (d.,(ft))-’ is its formal inverse).

Then h is a blow-analytic homeomorphism via 7r, if the following
conditions are satisfied:

(i) ~ extends continuously on U x ~0,1~ .

(ii) ~ admits an analytic lift ~ via 7r x 

(iii) ~ is tangent to each irreducible component of the critical locus
of 7r.

For to be well defined we need that the eigenvalues of dx( ft)
(in particular those of dh) are not zero at least on the analyticity set.
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These are difficult to check for an arbitrary family F(x, t), but in some
cases we can use the "segment type" family F(x, t) = (1 - t)x + th(x),
where we can express everything in terms of the given h. For instance
in the particular case when we can compose h, possibly both sides, with
blow-analytic homeomorphisms so that we bring it in a form when h

has all the eigenvalues either positive (negative) or non-real, then we can
consider the following easy to manipulate family ft(x) - (1 - t)x + th(x)
( ft(x) - (1 - t)x - th(x) respectively), which will have always non-zero
eigenvalues allowing us to construct the vector field ~ we want. Clearly if
the composite is a blow-analytic homeomorphism, so will be the initial one.

In the other direction we offer the following constructive proposition.

PROPOSITION 2.4. - Let

j = l, ... , m ( n), be a family closed under complex conjugation and such
that if ej then as well. Assume that

and = 1,..., m, as vector fields, admit lifts via some modifi-
cation 7r. Assume furthermore that 1 ~- (grad( aj (x)), ej (x)~, j - 1, ... , m, I
are positive blow-analytic units also via the modification 7r (when non real
we require that both their real and imaginary parts are blow-analytic and
the square of their absolute values are blow-analytic units).

is a blow-analytic homeomorphism
’

Proof. It is not hard to see that for the above defined h, dh has
= 1,..., m, as eigenvectors, and A - 3 - - 1-~- =

1, ... , m, as the corresponding eigenvalues. Therefore using the segment
family, F(x, t) = (1 - t)x + th(x), we see that the above vector field ~ is
given by which clearly satisfies the requirements
for h to be a blow-analytic homeomorphism. D

In the case when ej (x) = e~, the canonical base in R~, we recover
many results from [3]. For instance if 7r is toric and we take 

xl (P(x) - 1), ai = 0, i &#x3E; 2 such that is a blow-analytic unit via 7r
and it extends continuously on R’ B 101 we obtain Lemma 5.1 from [3].

The behaviour of the eigenvectors (eigenvalues) depends on the
coordinates we use. Choosing a good coordinate system may give as a better
chance in proving that a given map is a blow-analytic homeomorphism.
Actually we have the following more general statement.
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PROPOSITION 2.5. - Let h : (R", 0) - (ItT, 0) be a germ of a semi-
algebraic blow-analytic map. Then h is a blow-analytic homeomorphism if
and only if there exists a germ of an injective arc-analytic map 0152 : (RI, 0) -4
(R~, 0) such that a o h is injective and it has alp.

Proof. If a is as above then it is easy to check that h is injective
and it has alp and thus as we already mentioned before, this ensures that
h is a blow-analytic homeomorphism. 0

3. Implicit function theorem.

In this section we prove an implicit function theorem with an eye
toward a criterion to decide whether or not a given blow-analytic function
is blow-analytic equivalent to a coordinate function, say xl.

THEOREM 3.1. - Let f : (R,0) be a germ of a locally
blow-analytic function. If on a dense subset of a neighbourhood of the origin

a is bounded away from zero, both from above and below, then thereOx,
exists a unique locally blow-analytic map germ, a : (R’- 1, 0) - (R, 0),
such that f (a(b), b) = 0, for every b in a small neighbourhood of the origin
in R n-1

Proof. According to Theorem 1.4 in [1], a function is locally
blow-analytic if and only if it is subanalytic and arc-analytic. Hence it is

enough to prove the theorem for blow-analytic functions. Because under the
hypothesis, a is a blow-analytic unit (being blow-analytic meromorphic),,9x,
we may assume that it is positive (otherwise we use - f instead). In a
neighbourhood U of the origin of we may write (using the fact that
f (txl, b) is analytic in t)

with P a positive blow-analytic unit in a small neighbourhood of the origin
in R’-1 (Hadamard decomposition, where we use decisively the assumption
on We can find cl, c2 positive real numbers such that we have that

and ql  0, q2 &#x3E; 0 such that [qi, q2l x V C U where V is a small

neighbourhood of the origin in RI-1. Now let us consider

We claim that for (0, b) E W, t E [ql, q2~ , f (t, b) changes the sign.
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Indeed for negative t E [ql, q2] we have

and this becomes negative if we put for instance t = ql. For positive
t E [ql, q2] we have

and this becomes positive if we put for instance t = q2.

These show that for (0, b) E W there exists at least one a(b) E [ql, q2l
such that f (a (b), b) = 0. The fact that this a (b) is unique follows once
again from our assumption. Indeed dt f (t, b) - ~ i (t, b) is positive by
our assumption, which shows that for each fixed b our function is strictly
increasing, giving us the uniqueness of a ( b) .

The graph of a clearly coincides with the zero-set of f near the origin
in JRn and this is clearly subanalytic by our assumption. It remains to prove
that a is also arc-analytic. First we will prove this for n = 2. We may write:

If we put instead of b, = 0 an analytic arc, we obtain that

The left hand side of this identity is analytic by assumption vanishing
at zero, and in the right hand side cx (,C3(t) ) is a priori a fractional power series
(in our set up the composite of two subanalytic functions is subanalytic and
we are in the one variable case) and because P is a blow-analytic unit we
may conclude that must start with integer powers. If is

not analytic we write T(t) = = 7l(t) + 72(t), where by definition
contains all the integer powers in T(t). Considering the change of

coordinates T(y), y = y and repeating the decomposition above,
we conclude that T2 must start also with integer powers which shows that
it must be identically zero, thus T(t) is analytic. This gives that a is an arc-
analytic function which together with sub-analyticity, following [1], gives
that actually a is locally blow-analytic.

This finishes the proof in the case n - 2. In the general case we
use the strong decomposition results from [12], especially Theorem 7.5, to
obtain fractional power series for a (on quadrants as in [12] or [11]). By
fixing generically i E ~ 1, ..., n - 1 ~ the theorem reduces
to the case n = 2. 11
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COROLLARY 3.2. - Let f : (R x -~ be a germ of a

blow-analytic function via a modification 7r. Assume that af is a blow-

analytic unit via 7r. Then h(r,y) = ( f (x, y), g), (x, y) E R x Rn, is a

blow-analytic homeomorphism.

Proof. Consider g(x, y, z) : R x x R given by g(x, y, z) _
f (x, y) - z. Then g satisfies the hypothesis of the implicit function theo-
rem and therefore there exists an arc-analytic function a(y, z) such that

0. We can define the arc-analytic map h-1 (x, y) -
(cx(g, x), y). Also let us notice that in this case, for any analytic arcs
0(t) = z andq(t) = y, there exists an analytic arc T(t) such that

f (T(t)~’Y(t)) _ 0 (t). ° 0

We also note the following criterion.

THEOREM 3.3. - Let f : (R x -~ (R,0) be a germ of a
blow-analytic function and assume that a~ (x, y), (x, y) x is a

blow-analytic unit. Then f is blow-analytic equivalent to the coordinate
function x.

Proof. Indeed under these assumptions it follows that there

exists cx(y) an arc-analytic function such that f (a(y), y) = 0 so h(x, y) =
(x + a(y), y) : R x R x is a blow-analytic homeomorphism.We
have that g(x, y) = f o h(x, y) is blow-analytic equivalent to f and ’99 is a
blow-analytic unit (because a is) and moreover g(O, y) m 0. This in turn
implies that g(x, Y) = xP(x, y) with P a blow-analytic unit. In this case
Corollary 3.7 from [3] gives that g is blow-analytic equivalent to x, which
finishes the proof. 0

We also note that the converse of this proposition is no longer true.
Indeed there are blow-analytic functions, components of blow-analytic
homeomorphisms, all of whose partial derivatives are not blow-analytic
units (see for instance Example 1.2). Instead we offer the following criterion.

COROLLARY 3.4. - Let f : (R, 0) be a germ of a blow-
analytic function. Then f is blow-analytic equivalent to the coordinate
function x, if and only if there exists a blow-analytic homeomorphism T
such that for some i E {I, ..., n} 9fOT is a blow-analytic unit.ax,

Proof. Clear. D

Now having a criterion to test a coordinate function in our category,
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we can easily prove the following.

THEOREM 3.5. - Let h = (hl, h2) : (R 2,0) - (R~,0) be a blow-
analytic map germ. Then h is a blow-analytic homeomorphism if and only
if its jacobian determinant is a blow-analytic unit and h, is blow-analytic
equivalent to a coordinate function.

Proof. Assume that T is a blow-analytic homeomorphism such
that hi o T(x, y) - x. Then h o T(x, y) - (x, f (x, y)) and therefore
Of is a blow-analytic unit, so we can apply Corollary 3.2 to finish the
proof. D

Note that the result above is not true without asking that one
component be blow-analytic equivalent to a coordinate as we can see in
Example 3.4 in [3].

4. Resolution of analytic curves.

In this section we describe a very elementary procedure to resolve
analytic curves in R~ (or C~). In principle this is the same as Theorem
5.10 [3], but it is more general and much simpler.

Let U be a neighborhood of the origin of and f : 
denote a continuous blow-analytic function defined almost everywhere on
U. Assume that for some analytic arc a : (R,0) -4 U, we have that

 ord(cx) (where by ord(a) we understand the minimum of the
orders of its components, and orda( f ) = ord( f o a)). Then in [13] an
"associated" blow-analytic homeomorphism is constructed between two

neighborhoods of the origin of R~ which in particular drops the order
along the arc (a, 0). The example [13] shows that via this kind of blow-
analytic homeomorphism, a curve like (t3, t2, 0) goes to a smooth one, i.e.,
that blow-analytic homeomorphism makes the cusp smooth (for a related
problem see also [5]).

In the sequel we will show that for any analytic curve a(t) in R 2 with
a parameterization a(t) = (ctP + h.o.t., tn), n  p, we can construct an

explicit rational blow-analytic function f : U -* R, U a neighborhood of
the origin of R~, such that f (a(t)) is either an analytic arc of order strictly
less, or of order n in the case when all the exponents of the initial curve are

multiples of n. Iterating this procedure will lead to the claimed resolution.
This will give us a lot of explicit examples for which we can use the general
construction in [13] to provide interesting blow-analytic homeomorphisms.
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THEOREM 4.1. - For any analytic curve a = (al , c~2 ) : (II~, 0) --~ U,
U a neighborhood of the origin of JR2, there is a continuous rational

(blow-analytic) function f : U --+ R, defined constructively, such that

Proof. After analytic changes of coordinates both in the source
and in the target, we may assume that a has the following form:

with q = gcd(p, n), p = ord(al), n = ord(a2), q  n  p, c ~ 0 or, c~(t) _
o;2(~)) = (0, tn) (this last case is trivial). In the case of interest, we

can find positive integers a, b, k such that -ap -f- bn = q and 21~n &#x3E; a.

Define f (x, y) as

It is clear that f is a blow-analytic function via a convenient modi-
fication 7r (either toric or a finite composite of blowing-ups which can be
described effectively). D

Now we can proceed as in [13] to lift our given arc to one of a smaller
order and therefore inductively this finishes the proof.

Namely a has the following form:

and we may assume that after some analytic changes of coordinates we
have that

We can construct the above described function f for a pair i, j for
which is minimum (blow-analytic function via a convenient modification
7r), and then proceed as below. Locally we have

Here we define
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If we denote by d(t) a lift of h((a(t), 0)), we note that is a

lift of a whose order is strictly less than the order of the given arc a.

To use this procedure to resolve over C one needs a bit of care in
the definition of f to make sure that the denominator does not vanish for
the given curve (choose some coefficients). The computation being formal,
the method will also give the resolution in this case (we note that upstairs
everything is analytic).
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