Semi-infinite cohomology and superconformal algebras
Annales de l'Institut Fourier, Volume 51 (2001) no. 3, pp. 745-768.

We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler geometry.

Nous décrivons des représentations de certaines algèbres superconformes dans le complexe de Weil semi-infini de l'algèbre des lacets d'une algèbre de Lie complexe de dimension finie et dans la cohomologie semi-infinie. Nous démontrons que dans le cas où l'algèbre de Lie est munie d'une forme bilinéaire symétrique non dégénérée invariante, la cohomologie semi-infinie relative de l'algèbre des lacets admet une structure, qui est l'analogue de la structure classique de la cohomologie de de Rham des variétés kählériennes.

DOI: 10.5802/aif.1835
Classification: 17B55, 17B70, 81R10, 14F40
Keywords: Weil complex, semi-infinite cohomology, superconformal algebra, Kähler geometry
Mot clés : complexe de Weil, cohomologie semi-infinie, algèbre superconforme, géométrie kählérienne

Poletaeva, Elena 1

1 Lund University, Centre for Mathematical Sciences, Box 118, 221 00 Lund (Suède)
@article{AIF_2001__51_3_745_0,
     author = {Poletaeva, Elena},
     title = {Semi-infinite cohomology and superconformal algebras},
     journal = {Annales de l'Institut Fourier},
     pages = {745--768},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {51},
     number = {3},
     year = {2001},
     doi = {10.5802/aif.1835},
     zbl = {1067.17012},
     mrnumber = {1838464},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1835/}
}
TY  - JOUR
AU  - Poletaeva, Elena
TI  - Semi-infinite cohomology and superconformal algebras
JO  - Annales de l'Institut Fourier
PY  - 2001
SP  - 745
EP  - 768
VL  - 51
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1835/
DO  - 10.5802/aif.1835
LA  - en
ID  - AIF_2001__51_3_745_0
ER  - 
%0 Journal Article
%A Poletaeva, Elena
%T Semi-infinite cohomology and superconformal algebras
%J Annales de l'Institut Fourier
%D 2001
%P 745-768
%V 51
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1835/
%R 10.5802/aif.1835
%G en
%F AIF_2001__51_3_745_0
Poletaeva, Elena. Semi-infinite cohomology and superconformal algebras. Annales de l'Institut Fourier, Volume 51 (2001) no. 3, pp. 745-768. doi : 10.5802/aif.1835. https://aif.centre-mersenne.org/articles/10.5802/aif.1835/

[Ad] M. Ademollo; L. Brink; A. D' Adda; R. D' Auria; E. Napolitano; S. Sciuto; E. Del; Giudice; P. Di; Vecchia; S. Ferrara; F. Gliozzi; R. Musto; R. Rettorino Dual strings with U(1) colour symmetry, Nucl. Phys., Volume B111 (1976), pp. 77-110 | DOI

[Ak] F. Akman Some cohomology operators in 2-D field theory, Proceedings of the conference on Quantum topology (Manhattan, KS, 1993) (1994), pp. 1-19 | Zbl

[Fe] B. L. Feigin Private communication

[FF] B. Feigin; E. Frenkel Semi-infinite Weil Complex and the Virasoro Algebra, Commun. Math. Phys., Volume 137 (1991), pp. 617-639 | DOI | MR | Zbl

[FF] B. Feigin; E. Frenkel Erratum "Semi-infinite Weil Complex and the Virasoro Algebra", Commun. Math. Phys., Volume 147 (1992), pp. 647-648 | DOI | MR | Zbl

[FGZ] I. Frenkel; H. Garland; G. Zuckerman Semi-infinite cohomology and string theory, Proc. Natl. Acad. Sci. U.S.A., Volume 83 (1986), pp. 8442-8446 | DOI | MR | Zbl

[FST] B. L. Feigin; A. M. Semikhatov; I. Yu. Tipunin Equivalence between chain categories of representations of affine sl (2) and N=2 superconformal algebras, J. Math. Phys., Volume 39 (1998) no. 7, pp. 3865-3905 | DOI | MR | Zbl

[Fu] D. B. Fuks Cohomology of infinite-dimensional Lie algebras, Consultants Bureau, New York and London, 1986 | MR | Zbl

[G] E. Getzler Two-dimensional topological gravity and equivariant cohomology, Commun. Math. Phys., Volume 163 (1994) no. 3, pp. 473-489 | DOI | MR | Zbl

[GH] P. Griffiths; J. Harris Principles of algebraic geometry, Wiley-Interscience Publ., New York, 1978 | MR | Zbl

[KL] V. G. Kac; J. W. van de Leur; S. J. Gates et al., editors On Classification of Superconformal Algebras, Strings-88 (1989), pp. 77-106 | Zbl

[P1] E. Poletaeva Semi-infinite Weil complex and N = 2 superconformal algebra I (Preprint MPI 97-78)

[P1] E. Poletaeva Semi-infinite Weil complex and superconformal algebras II (Preprint MPI 97-79)

[P2] E. Poletaeva Superconformal algebras and Lie superalgebras of the Hodge theory (Preprint MPI, p. 99-136) | MR | Zbl

[P3] E. Poletaeva Semi-infinite cohomology and superconformal algebras, Comptes Rendus de l'Académie des Sciences, Série I, Volume t. 326 (1998), pp. 533-538 | MR | Zbl

Cited by Sources: