La transformation de Fourier pour les 𝒟-modules
Annales de l'Institut Fourier, Tome 50 (2000) no. 6, pp. 1891-1944.

Sur n vu comme variété algébrique, soient la transformation de Fourier pour les 𝒟-modules, + la transformation de Fourier faisceautique de Brylinsky-Malgrange-Verdier, et 𝒮ol le foncteur “solutions”. On prouve alors que pour tout 𝒟-module 1-spécialisable à l’infini , on a un isomorphisme 𝒮ol() + 𝒮ol(). Le résultat a été conjecturé en 1988 par B. Malgrange, qui l’a prouvé pour module de type fini sur l’algèbre de Weyl.

Let be the Fourier transform for 𝒟-Modules over n , let + be the Fourier transform for sheaves defined by Brylinsky-Malgrange-Verdier, and let 𝒮ol be the “solutions” functor. We prove that for any 𝒟-Module 1-specialisable at infinity, there is an isomorphism 𝒮ol() + 𝒮ol(). This result was conjectured in 1988 by B. Malgrange, who proved it for the particular case of modules of finite type over the Weyl algebra.

@article{AIF_2000__50_6_1891_0,
     author = {Daia, Liviu},
     title = {La transformation de {Fourier} pour les ${\mathcal {D}}$-modules},
     journal = {Annales de l'Institut Fourier},
     pages = {1891--1944},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {6},
     year = {2000},
     doi = {10.5802/aif.1810},
     zbl = {0963.35002},
     mrnumber = {2002f:32016},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1810/}
}
TY  - JOUR
AU  - Daia, Liviu
TI  - La transformation de Fourier pour les ${\mathcal {D}}$-modules
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 1891
EP  - 1944
VL  - 50
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1810/
DO  - 10.5802/aif.1810
LA  - fr
ID  - AIF_2000__50_6_1891_0
ER  - 
%0 Journal Article
%A Daia, Liviu
%T La transformation de Fourier pour les ${\mathcal {D}}$-modules
%J Annales de l'Institut Fourier
%D 2000
%P 1891-1944
%V 50
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1810/
%R 10.5802/aif.1810
%G fr
%F AIF_2000__50_6_1891_0
Daia, Liviu. La transformation de Fourier pour les ${\mathcal {D}}$-modules. Annales de l'Institut Fourier, Tome 50 (2000) no. 6, pp. 1891-1944. doi : 10.5802/aif.1810. https://aif.centre-mersenne.org/articles/10.5802/aif.1810/

[1] B. Abdel Gadir, Analyse microlocale des systèmes différentiels holonomes, Thèse, Univ. de Grenoble 1, 1992.

[2] J.E. Björk, Rings of Differential Operators, North-Holland, Amsterdam, 1979. | Zbl

[3] A. Borel et al., Algebraic D-modules, Persp. in Math., n° 2, Academic Press, 1987. | MR | Zbl

[4] L. Boutet De Monvel, P. Krée, Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, 17-1 (1967), 295-323. | Numdam | MR | Zbl

[5] L. Boutet De Monvel, M. Lejeune, B. Malgrange, Opérateurs différentiels et pseudo-différentiels.

[6] J.-L. Brylinsky, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque, n° 140-141 (1986), 3-134. | Zbl

[7] J.-L. Brylinsky, B. Malgrange, J.-L. Verdier, Transformation de Fourier géométrique I, C. R. Acad. Sci. Paris, 294 (1983), 55-58. | MR | Zbl

[8] J.-L. Brylinsky, B. Malgrange, J.-L. Verdier, Transformation de Fourier géométrique II, C. R. Acad. Sci. Paris, 303 (1986), 193-198. | MR | Zbl

[9] P. Deligne, Le formalisme des cycles évanescents, Lecture Notes in Math., n° 340, Springer Verlag, Berlin (1973, SGA 7 II, exp. 13,14.). | MR | Zbl

[10] R. Hartshorne, Residues and Duality, Lecture Notes in Math., n° 20, Springer Verlag, Berlin, 1966. | Zbl

[11] L. Hörmander, An introduction to complex analysis in several variables, D. van Nostrand Comp., Princeton, 1966. | Zbl

[12] R. Hotta, M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Inv. Math., 75 (1984), 327-358. | MR | Zbl

[13] M. Kashiwara, On the maximally overdetermined systems of linear differential equations I, Publ. RIMS Kyoto, 10 (1975), 563-579. | MR | Zbl

[14] M. Kashiwara, b-functions and holonomic systems, Inv. Math., 38 (1976), 33-53. | MR | Zbl

[15] M. Kashiwara, On the holonomic systems of linear differential equations II, Inv. Math., 49 (1978), 121-135. | MR | Zbl

[16] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equation, Lecture Notes in Math., n° 1016, Springer Verlag, Berlin, 1983, 134-142. | MR | Zbl

[17] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS Kyoto, 20 (1984), 319-365. | MR | Zbl

[18] M. Kashiwara, T. Kawaï, Second microlocalization and asymptotic expansions, Lecture Notes in Physics, n° 126, Springer Verlag, Berlin, 1980, 21-76. | MR | Zbl

[19] M. Kashiwara, T. Kawaï, On holonomic systems of micro-differential equations III — Systems with regular singularities, Publ. RIMS Kyoto, 17 (1981), 813-979. | MR | Zbl

[20] M. Kashiwara, T. Kawaï, Microlocal analysis, Publ. RIMS Kyoto, 19 (1983), 1003-1032. | MR | Zbl

[21] M. Kashiwara, T. Kawaï, T. Kimura, Foundations of algebraic analysis, Princeton Univ. Press, Princeton, 1986. | MR | Zbl

[22] M. Kashiwara, P. Schapira, Sheaves on manifolds, Springer Verlag, Berlin, 1991. | Zbl

[23] N.M. Katz, G. Laumon, Transformation de Fourier et majoration de sommes exponentielles, Publ. Math. IHES, 62 (1986), 361-418. | Numdam | Zbl

[24] G. Laumon, Transformation de Fourier géométrique, Prépubl. IHES M/52, 1985.

[25] Y. Laurent, Théorie de la deuxième microlocalisation dans le domaine complexe, Progress in Math., n° 53, Birkhäuser, Boston, 1985. | MR | Zbl

[26] Y. Laurent, Polygone de Newton et b-fonctions pour les modules microdifférentiels, Ann. École Norm. Sup., 4e série, 20 (1987), 391-441. | Numdam | MR | Zbl

[27] Y. Laurent, Vanishing cycle sheaves of D-modules, Inv. Math., 112 (1993), 491-539. | MR | Zbl

[28] Y. Laurent, B. Malgrange, Cycles proches, spécialisation et D-modules, Prépubl. Inst. Fourier, n° 275, 1994. | Numdam | Zbl

[29] B. Malgrange, Remarques sur les équations différentielles à points singuliers irréguliers, Lecture Notes in Math., n° 712, Springer Verlag, 1979, 77-86. | MR | Zbl

[30] B. Malgrange, Transformation de Fourier géométrique, Sém. Bourbaki, 692 (1987-1988). | Numdam | Zbl

[31] B. Malgrange, Fourier transforms and differential equations, Proc. of the Summer School on Mathematical Physics, Brasov, 1989. | Zbl

[32] B. Malgrange, Equations différentielles à coefficients polynomiaux, Progress in Math., n° 96, Birkhäuser, Berlin, 1991. | MR | Zbl

[33] B. Malgrange, Connexions méromorphes, in ‘Singularities Lille 1991’, J.-P. Brasselet, éd., London Math. Soc. Lecture Notes, n° 201, Cambridge Univ. Press, 1994, 251-261. | MR | Zbl

[34] B. Malgrange, Filtrations des modules holonomes, in ‘Analyse algébrique des perturbations singulières II’, L. Boutet de Monvel, éd., Hermann, 1994, 35-41. | MR | Zbl

[35] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les D-modules cohérents, Travaux en cours, n° 35, Hermann, Paris, 1989. | MR | Zbl

[36] T. Oda, Introduction to algebraic analysis on complex manifolds, Adv. Stud. in Pure Math., n° 1, 1983. | MR | Zbl

[37] F. Pham, Singularités des systèmes différentiels de Gauss-Manin, Progress in Math., n° 2, Birkhäuser, Boston, 1979. | MR | Zbl

[38] J.-P. Ramis, À propos du théorème de Borel-Ritt à plusieurs variables, Lecture Notes in Math., n° 712, Springer Verlag, 1979, 289-292. | MR | Zbl

[39] C. Sabbah, D-modules et cycles évanescents, Travaux en cours, n° 24, Hermann, Paris, 1987, 53-98. | Zbl

[40] M. Sato, M. Kashiwara, T. Kawaï, Microfunctions and pseudo-differential equations, Lecture Notes in Math., n° 287, Springer Verlag, Berlin, 1973, 265-529. | MR | Zbl

[41] P. Schapira, Microdifferential systems in the complex domain, Springer Verlag, Berlin, 1985. | MR | Zbl

[42] J.-P. Schneiders, Dualité pour les modules différentielles, Thèse, Univ. de Liège, 1986-1987.

[43] J.-C. Tougeron, An introduction to the theory of Gevrey expansions and to the Borel-Laplace transforms, with some applications, notes de cours, 1989-1990.

[44] J.-L. Verdier, Dualité pour les espaces localement compacts, Sém. Bourbaki, 300 (1966). | Numdam | Zbl

[45] J.-L. Verdier, Géométrie microlocale, Lecture Notes in Math., n° 1016, Springer Verlag, Berlin, 1983, 127-133. | MR | Zbl

[H] C. Huygue, Transformation de Fourier des D✝X,ℚ(∞)-modules, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 759-762. | MR | Zbl

[KS] M. Kashiwara, P. Shapira, Laplace transforms and fourier-Sato transforms, Algebraic analysis methods in microlocal analysis (Japanese), Sūrikaisekiken-kyūusho Kōkyūroku, 983 (1997), 33-35. | Zbl

[R] L. Ramero, Fourier transforms in geometry and arithmetic, Number theory, II (Rome, 1995), Rend. Sem. Math. Univ. Politec Torino, 53-4 (1995), 419-436. | Zbl

[S] C. Sabbah, Monodromy at infinity and Fourier transform, Publ. Res. Inst. Math. Sci., 33-4 (1997), 643-685. | MR | Zbl

Cité par Sources :