Let be a bounded pseudoconvex domain that admits a Hölder continuous plurisubharmonic exhaustion function. Let its pluricomplex Green function be denoted by . In this article we give for a compact subset a quantitative upper bound for the supremum in terms of the boundary distance of and . This enables us to prove that, on a smooth bounded regular domain (in the sense of Diederich-Fornaess), the Bergman differential metric tends to infinity, for , when tends to a boundary point. Furthermore, we prove that the order of growth of under nontangential approach of to a point of finite type, can be estimated from below by , where denotes the order of pseudoconvex extendability of at .
Soit un domaine pseudoconvexe qui admet une fonction plurisousharmonique d’exhaustion et Hölder continue. On note la fonction pluricomplexe de Green, pour . Dans cet article nous allons donner pour un ensemble compact une borne supérieure quantitative pour , à l’aide de la distance au bord de et du point . Comme application nous pouvons démontrer que, dans un domaine régulier (au sens de Diederich-Fornaess), la métrique de Bergman différentielle tend vers l’infini, pour , si tend vers un point du bord de . De plus, nous démontrons que l’ordre de croissance de , quand tend vers un point de type fini de façon non tangentielle, est toujours supérieur à , où est l’ordre d’extensibilité pseudoconvexe de en .
@article{AIF_2000__50_4_1205_0,
author = {Diederich, Klas and Herbort, Gregor},
title = {Quantitative estimates for the {Green} function and an application to the {Bergman} metric},
journal = {Annales de l'Institut Fourier},
pages = {1205--1228},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {50},
number = {4},
year = {2000},
doi = {10.5802/aif.1790},
zbl = {0960.32022},
mrnumber = {2001k:32058},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1790/}
}
TY - JOUR AU - Diederich, Klas AU - Herbort, Gregor TI - Quantitative estimates for the Green function and an application to the Bergman metric JO - Annales de l'Institut Fourier PY - 2000 SP - 1205 EP - 1228 VL - 50 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1790/ DO - 10.5802/aif.1790 LA - en ID - AIF_2000__50_4_1205_0 ER -
%0 Journal Article %A Diederich, Klas %A Herbort, Gregor %T Quantitative estimates for the Green function and an application to the Bergman metric %J Annales de l'Institut Fourier %D 2000 %P 1205-1228 %V 50 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1790/ %R 10.5802/aif.1790 %G en %F AIF_2000__50_4_1205_0
Diederich, Klas; Herbort, Gregor. Quantitative estimates for the Green function and an application to the Bergman metric. Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1205-1228. doi: 10.5802/aif.1790
[1] , Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci., 41 (1993), 151-157. | Zbl | MR
[2] , , Hyperconvexity and Bergman completeness, Nagoya Math. J., 151 (1998), 221-225. | Zbl | MR
[3] , Comparison of the pluricomplex and the classical Green functions, Michigan Math. J., 45 (1998), 399-407. | Zbl | MR
[4] , , , Jensen measures, hyperconvexity, and boundary behavior of the pluricomplex Green's function, Ann. Pol. Math., 71 (1999), 87-103. | Zbl
[5] , Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., 194 (1987), 519-564. | Zbl | MR
[6] , , Pseudoconvex domains : Bounded strictly plurisubharmonic exhaustion functions, Invent. Math., 39 (1977), 129-141. | Zbl | MR
[7] , , Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. | Zbl | MR
[8] , , Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, J. Geom. Analysis 3 (1993), 237-267. | Zbl | MR
[9] , , Pseudoconvex domains of semiregular type, Contributions to Complex Analysis (H. Skoda, J. M. Trépreau, ed.), Aspects of Mathematics, vol. E 26, Vieweg-Verlag, 1994, pp. 127-162. | Zbl | MR
[10] , , An estimate on the Bergman distance on pseudoconvex domains, Ann. of Math., 141 (1995), 181-190. | Zbl | MR
[11] , Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in ℂn with smooth boundary, Trans. Amer. Math. Soc., 207 (1975), 219-240. | Zbl | MR
[12] , The Bergman metric on hyperconvex domains, Math. Zeit., 232 (1999), 183-196. | Zbl | MR
[13] , On the pluricomplex Green function on pseudoconvex domains with a smooth boundary, Internat. J. of Math. (To appear). | Zbl
[14] , An introduction to complex analysis in several variables, North Holland, Amsterdam, 2nd ed. ed., 1973. | Zbl
[15] , Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113 (1985), 231-240. | Zbl | MR | Numdam
Cité par Sources :



