Nous montrons l’analyticité d’un ensemble -concave contenu dans un espace complexe de dimension et de -mesure de Hausdorff localement finie. On en déduit un théorème d’élimination des singularités pour les applications méromorphes à valeurs dans un espace -complet.
We prove the analyticity of -concave sets of locally finite Hausdorff -measure in a -dimensional complex space. We apply it to give a removability criterion for meromorphic maps with values in -complete spaces.
@article{AIF_2000__50_4_1191_0, author = {V\^aj\^aitu, Viorel}, title = {The analyticity of $q$-concave sets of locally finite {Hausdorff} $(2n-2q)$ measure}, journal = {Annales de l'Institut Fourier}, pages = {1191--1203}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {4}, year = {2000}, doi = {10.5802/aif.1789}, zbl = {0974.32006}, mrnumber = {2001j:32010}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1789/} }
TY - JOUR AU - Vâjâitu, Viorel TI - The analyticity of $q$-concave sets of locally finite Hausdorff $(2n-2q)$ measure JO - Annales de l'Institut Fourier PY - 2000 SP - 1191 EP - 1203 VL - 50 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1789/ DO - 10.5802/aif.1789 LA - en ID - AIF_2000__50_4_1191_0 ER -
%0 Journal Article %A Vâjâitu, Viorel %T The analyticity of $q$-concave sets of locally finite Hausdorff $(2n-2q)$ measure %J Annales de l'Institut Fourier %D 2000 %P 1191-1203 %V 50 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1789/ %R 10.5802/aif.1789 %G en %F AIF_2000__50_4_1191_0
Vâjâitu, Viorel. The analyticity of $q$-concave sets of locally finite Hausdorff $(2n-2q)$ measure. Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1191-1203. doi : 10.5802/aif.1789. https://aif.centre-mersenne.org/articles/10.5802/aif.1789/
[1] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. | Numdam | MR | Zbl
, ,[2] On the removable singularities for meromorphic mappings, Ann. Polon. Math., 70 (1998), 43-47.
,[3] n-concavity of n-dimensional complex spaces, Math. Z., 210 (1992), 203-206. | MR | Zbl
,[4] Complete locally pluripolar sets, J. reine angew. Math., 412 (1990), 108-112. | MR | Zbl
,[5] Cohomology of q-convex spaces in top degress, Math. Z., 204 (1990), 283-295. | MR | Zbl
,[6] Thin complements of complete Kähler domains, Math. Ann., 259 (1982), 331-341. | Zbl
, ,[7] On the nature of thin complements of complete Kähler domains, Math. Ann., 268 (1984), 475-495. | Zbl
, ,[8] Smoothing q-convex functions and vanishing theorems, Invent. Math., 82 (1985), 291-305. | MR | Zbl
, ,[9] Smoothing q-convex functions in the singular case, Math. Ann., 273 (1986), 665-671. | MR | Zbl
, ,[10] Analyticité séparée et prolongement analytique, Math. Ann., 286 (1990), 153-170. | MR | Zbl
,[11] Geometric measure theory, Berlin-Heidelberg-New York, Springer, 1969. | MR | Zbl
,[12] Oka's inequality for currents and applications, Math. Ann., 301 (1995), 399-419. | MR | Zbl
, ,[13] Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann., 131 (1965), 38-75. | MR | Zbl
,[14] Über die aus der singulären Stellen einer analytischen Funktion mehrerer Veränderlichen bestehende Gebielde, Acta Math., 32 (1909), 57-79. | JFM
,[15] Entre les hypersurfaces et les ensembles pseudoconcaves, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 873-887. | Numdam | MR | Zbl
,[16] The Hartogs type extension theorem for meromorphic mappings into q-complete complex spaces, Boll. U.M.I., (8) 2-B (1999), 251-261. | MR | Zbl
, ,[17] On the equivalence between locally polar and globally polar in ℂn, Arkiv för Mat., 16 (1978), 109-115. | MR | Zbl
,[18] Sur les ensembles pseudoconcaves, J. Math. Kyoto Univ., 1 (1961/1962), 225-245. | MR | Zbl
,[19] Analyticity of complements of complete Kähler domains, Proc. Japan Acad., 56, Ser. A, (1980), 484-487. | MR | Zbl
,[20] Continuous q-convex exhaustion functions, Invent. Math., 85 (1986), 249-262. | MR | Zbl
,[21] On the removal of singularities for analytic sets, The Mich. Math. J., 15-16 (1968/1969), 111-120. | MR | Zbl
,[22] q-completeness and q-concavity of the union of open subspaces, Math. Z., 221 (1996), 217-229. | MR | Zbl
,[23] On P-complete morphisms of complex spaces, Geometric Complex Analysis, Proc. the third International Research Institute, Math. Soc. Japan, Hayama 1995; Eds. J. Noguchi, H. Fujimoto, J. Kajiwara, and T. Ohsawa, pag. 653-665. | MR | Zbl
,[24] Invariance of q-completeness with corners under finite holomorphic surjective maps, Bull. Belg. Math. Soc., 5 (1998), 713-718. | MR | Zbl
,[25] A Levi problem for continuous strongly q-plurisubharmonic functions, C. R. Acad. Sci. Paris, 328 (1999), 573-578. | MR | Zbl
,[26] Polynomially convex hull and analyticity, Arkiv för Matem., 20 (1982), 129-135. | MR | Zbl
,Cité par Sources :