VIOREL VÂJÂITU

The analyticity of q-concave sets of locally finite Hausdorff $(2n - 2q)$ measure

<http://www.numdam.org/item?id=AIF_2000__50_4_1191_0>

© Annales de l’institut Fourier, 2000, tous droits réservés.

THE ANALYTICITY OF q-CONCAVE SETS OF
LOCALLY FINITE HAUSDORFF (2n-2q)-MEASURE

by Viorel VÂJÂITU

1. Introduction.

Let A be a closed subset of a complex space X. The question of finding reasonable assumptions on A which guarantee its analyticity has been studied over the years by various authors.

Hartogs [14] considered a continuous function $f : D \to \mathbb{C}$, where $D \subset \mathbb{C}^n$ is open, and showed that the graph G_f of f in $D \times \mathbb{C}$ is pseudoconcave (i.e., the complement of G_f in $D \times \mathbb{C}$ is locally Stein) if and only if f is holomorphic, that is G_f is analytic.

Grauert revealed in his thesis [13] a new interesting aspect of the above question bringing into play thin complements of complete Kähler domains. This topic was afterwards thoroughly studied by Diederich and Fornæss ([6], [7]) and Ohsawa [19].

On the other hand, Hirschowitz [15] settled the case when X is non-singular and A is pseudoconcave of locally finite Hausdorff $(2n-2)$-measure, where n is the complex dimension of X.

In this article, using q-convexity with corners we introduce the notion of q-concavity. (See §2 for definition. Note that for $q = 1$ we recover the usual pseudoconcavity as used in [15] and [18].) For instance, if X is a complex manifold of pure dimension n and $A \subset X$ is an analytic subset

Keywords: q-convexity – q-concavity – Hausdorff measure – Analytic set.
such that every irreducible of it has dimension $\geq n-q$, then A is q-concave [20]. Two more examples are given at the end of Section 2.

Our main result in this note, which establishes a converse of the above result due to M. Peternell and generalizes Hirschowitz's theorem already quotes above, is the following:

Theorem 1. — Let X be a complex space of pure dimension n and q a positive integer less than n. If $A \subset X$ is a q-concave subset such that its Hausdorff $(2n-2q)$-measure is locally finite, then A is analytic of pure dimension $n-q$.

As an application (see also Example 2 in Section 2) we have:

Corollary 1. — Let T be a closed positive current of bidimension (q, q) on a complex manifold M. If the Hausdorff $2q$-measure of $\text{Supp}(T)$ is locally finite, then $\text{Supp}(T)$ is an analytic subset of M of pure dimension q.

On the other hand, using [16], Theorem 1 yields the following removability theorem. (For $q = 1$ we recover the main result in [2].)

Theorem 2. — Let M be a complex manifold of pure dimension n, q a positive integer less than n, $E \subset M$ a closed subset of locally finite Hausdorff $(2n-2q)$-measure, and f a meromorphic mapping from $M \setminus E$ into a complex space Y. If E does not contain any $(n-q)$-dimensional analytic subset of M and Y possesses the meromorphic extension property in bidimension (q^n-q) (e.g., if Y is q-complete), then f is continued to a meromorphic mapping from M into Y.

The organization of this paper is as follows. After a preliminary section, we give in §3 the proofs of Theorems 1 and 2. The last section, §4, establishes connections with the q-pseudoconcavity notion introduced by M. Peternell [20].

2. Preliminaries.

Let T be a metric space and S a subset of T. For $p > 0$ and $\varepsilon > 0$ let $h^p_\varepsilon(S)$ denote the infimum of all (infinite) sums of the form $\sum \delta(S_n)^p$ where $S = \cup S_n$ is an arbitrary decomposition of S with $\delta(S_n) < \varepsilon$ for all n ($\delta =$ diameter). For $p > 0$ the Hausdorff p-measure h^p is defined by
$h^p(S) = \sup_{\varepsilon > 0} h^p(\varepsilon S) \leq +\infty$. We define $h^0(S)$ to be equal to the cardinality of S. The usual notion of k-dimensional volume in a Riemannian manifold agrees with h^k up to a constant factor depending only on n (for positive integers k). Thus, if A is a pure k-dimensional analytic set in a domain in \mathbb{C}^n, then $h^{2k}(A)$ is equal to a universal constant (depending on k) times the Riemannian volume of the set of regular points of A. For a detailed discussion on Hausdorff measure, see [11].

(●) The definition of q-convexity is the same as in [1], namely; a function $\varphi \in C^\infty(D, \mathbb{R})$, where $D \subset \mathbb{C}^n$ is an open subset, said to be q-convex if its Levi form

$$L_\varphi(z)(\xi) := \sum_{i,j=1}^n \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}(z)\xi_i \xi_j, \xi \in \mathbb{C}^n,$$

has at least $n-q+1$ positive (> 0) eigenvalues for every $z \in D$. This definition can be carried over to complex spaces by local restriction.

Let X be a complex space. X is said to be q-complete if there exists a q-convex function $\varphi \in C^\infty(X, \mathbb{R})$ which is exhaustive, i.e., the sublevel sets $\{x \in X ; \varphi(x) < c\}, c \in \mathbb{R}$, are relatively compact in X. We choose the normalization such that 1-complete spaces correspond to Stein spaces.

Following [8] and [20] a function $\varphi \in C^0(X, \mathbb{R})$ is said to be q-convex with corners on X if every point of X admits an open neighborhood U on which there are finitely many q-convex functions f_1, \ldots, f_k such that $\varphi|_U = \max(f_1, \ldots, f_k)$. Denote by $F_q(X)$ the set of all functions q-convex with corners on X.

We say that X is q-complete with corners if there exists an exhaustion function $\varphi \in F_q(X)$.

DEFINITION 1. — Let X be a complex space. A subset A of X is said to be q-concave (in X) if A is closed and every point of A has an open neighborhood Ω such that $\Omega \setminus A$ is q-complete with corners.

From [24] (see also [25]) we deduce immediately:

COROLLARY 2. — Let $\pi : X \to Y$ be a finite surjective holomorphic map of complex spaces and $A \subset Y$ a closed subset. Then A is q-concave in Y if and only if $\pi^{-1}(A)$ is q-concave in X.

Subsequently we give some facts on q-completeness with corners which allow us to reduce the proof of Theorem 1 to the case when X is a domain in \mathbb{C}^n.

TOME 50 (2000), FASCICULE 4
PROPOSITION 1. — Let Y be an analytic set in a complex space X. If Y is q-complete with corners, then Y has a neighborhood system of open sets which are q-complete with corners.

Proof. — By ([3], Lemma 3) if $\varphi \in F_q(Y)$ and $\eta \in C^0(Y, \mathbb{R})$, $\eta > 0$, then there exists an open neighborhood V of Y in X and $\psi \in F_q(V)$ such that $|\psi - \varphi| < \eta$ on Y. The method of Colțoiu ([4], Theorem 2) or Demailly ([5], the proof of Theorem 1, p. 287) can easily be adapted to our case. □

PROPOSITION 2. — Let X be a complex space and φ, ψ be continuous exhaustion functions on X such that there is an open neighborhood Ω of the set $\{\varphi = \psi\}$ in X with $\varphi \in F_p(\Omega \cup \{\varphi < \psi\})$ and $\psi \in F_q(\Omega \cup \{\psi < \varphi\})$. Then X is $(p + q)$-complete with corners.

Proof. — Let $\Lambda := \{\lambda \in C^\infty(\mathbb{R}, \mathbb{R}); \lambda' > 0, \lambda'' \geq 0\}$. For $\lambda \in \Lambda$ define $\Phi_\lambda : X \to \mathbb{R}$ by

$$\Phi_\lambda := 1/\left(\exp(-\lambda(\varphi)) + \exp(-\lambda(\psi))\right).$$

It is straightforward to see that Φ_λ is exhaustive for X and it is $(p + q)$-convex with corners on Ω. Now we let $\varepsilon > 0$ be continuous on X such that $\{|\varphi - \psi| \leq \varepsilon\} \subset \Omega$; define $W_- = \{\varphi - \psi \leq -\varepsilon\}$ and $W_+ = \{\varphi - \psi \geq \varepsilon\}$. Clearly W_-, W_+ are closed subsets of X and $W_- \cup W_+ \cup \Omega = X$. The proof is concluded if we show the next

CLAIM. — There is $\lambda \in \Lambda$ such that Φ_λ is p-convex with corners on W_- and q-convex with corners on W_+.

But this follows by adjusting the arguments in [22]. We omit the details. □

PROPOSITION 3. — Let U, V be open subsets of a complex space X such that U is p-complete with corners and V is q-complete with corners. Then $U \cup V$ is $(p + q)$-complete with corners.

Proof. — Consider exhaustion functions $f \in F_q(U)$ and $g \in F_q(V)$ for U and V respectively. Let $a \in C^\infty(U, \mathbb{R})$ with $0 \leq a \leq 1$, $a(x) = 1$ if $x \in U \setminus V$ or $x \in U \cap V$ and $f(x) \leq g(x) + 1$; $a(x) = 0$ if $x \in U \cap V$ and $f(x) > g(x) + 2$. Set $D := U \cup V$. Define φ on D by setting

$$\varphi = \begin{cases} f & \text{on } U \setminus V, \\ af + (1 - a)(1 + g) & \text{on } U \cap V, \\ 1 + g & \text{on } V \setminus U. \end{cases}$$

ANNALES DE L’INSTITUT FOURIER
Then \(\varphi \) is continuous and exhaustive for \(D \).

Let \(b \in C^\infty(V, \mathbb{R}) \) with \(0 \leq b \leq 1 \), \(b(x) = 1 \) if \(g(x) \leq \varphi(x) + 1 \) and \(b(x) = 0 \) if \(g(x) > \varphi(x) + 2 \). Define \(\psi \) on \(D \) by setting

\[
\psi = \begin{cases}
 bg + (1 - b)(1 + \varphi) & \text{on } V, \\
 1 + \varphi & \text{on } U \setminus V.
\end{cases}
\]

Then \(\psi \) is continuous and exhaustive for \(D \).

Finally, it easy to see that \(S := \{ \psi < 1 + \varphi \} \subset V \) and \(\psi = g \) on \(S \); hence \(\psi \in F_q(S) \). Similarly, \(T := \{ \varphi < 1 + \psi \} \subset U \) and \(\varphi = f \) on \(T \); so \(\varphi \in F_p(T) \). The conclusion then follows from Proposition 2.

\[\Box \]

Corollary 3. — Let \(A \) and \(B \) be \(p \)-concave and \(q \)-concave sets in the complex spaces \(X \) and \(Y \) respectively. Then \(A \times B \) is \((p + q) \)-concave in \(X \times Y \).

Proof. — Since the assertion is local, we may assume that \(X \) and \(Y \) are Stein spaces, \(X \setminus A \) is \(p \)-complete with corners, and \(Y \setminus B \) is \(q \)-complete with corners. Then \(X \times Y \setminus A \times B = X \times (Y \setminus B) \cup (X \setminus A) \times Y \) is \((p + q) \)-complete with corners by Proposition 3.

For a complex space \(X \) we introduce [20] the set \(G_q(X) \) as follows: For \(x_0 \in X \) let \(G_q(x_0) \) be the set of all functions \(g : X \rightarrow \mathbb{R} \) such that there are: an open neighborhood \(U \) of \(x_0 \) (which may depend on \(g \)) and \(f \in F_q(U) \) with \(f(x_0) = g(x_0) \) and \(f \leq g|_U \). Then put

\[
G_q(X) := C^0(X, \mathbb{R}) \cap \bigcap_{x \in X} G_q(x).
\]

Clearly \(F_q(X) \subseteq G_q(X) \subseteq C^0(X, \mathbb{R}) \).

Note that given an open set \(D \subseteq X \), an \(\varepsilon > 0 \), and a function \(g \in G_q(X) \), there is a function \(h \in F_q(D) \) such that \(|h - g| < \varepsilon \) on \(D \). See [20], Lemma 1. But we cannot use this fact and the classical perturbation procedure (see for instance [8]) to get a globally defined \(h \) since we do not know that given \(v \in G_q(X) \) and \(\theta \in C_a^\infty(X, \mathbb{R}) \) there is \(\varepsilon_o > 0 \) such that \(v + \lambda \theta \in G_q(X) \) for every \(\lambda \in \mathbb{R}, |\lambda| < \varepsilon_o \). However we can avoid this difficulty since we show:

Lemma 1. — The set \(F_q(X) \) is dense in \(G_q(X) \) in the sense that given an arbitrary \(g \in G_q(X) \) and \(\eta \in C^0(X, \mathbb{R}), \eta > 0 \), there is \(f \in F_q(X) \) such that \(|f - g| < \eta \).
Proof. — We do this in three steps.

Step 1). Fix $x \in X$ and $\varepsilon > 0$. By definition there is an open neighborhood Ω of x and $\varphi \in F_q(\Omega)$ with $\varphi(x) = g(x)$ and $\varphi \leq g$ on Ω. Let W, U be open neighborhoods of x, $W \subset U \subset \Omega$, such that $\varphi \geq g - \varepsilon$ on U; then let $\theta \in C_0^\infty(U, \mathbb{R})$, $\theta = -1$ on ∂W and $\theta(x) = 1$. If $c > 0$ is small enough, then $\psi := \varphi + c\theta \in F_q(U)$, $\psi < g$ on ∂W, $\psi \geq g$ on a neighborhood of x in W, and $|\psi - g| < 2\varepsilon$ on U.

Step 2). The above step shows that for all compact subsets K, L of X, there are: a finite set of indices I (which depends on K and L), open sets $V_i \subset W_i \subset U_i \subset L$ such that $\{V_i\}_{i \in I}$ cover K, functions $f_i \in F_q(U_i)$ with $|f_i - g| < 2\varepsilon$ on W_i, $f_i \geq g$ on V_i and $f_i < g$ on ∂W_i.

Step 3). Let $\{K_\nu\}_{\nu \in \mathbb{N}}$ be an exhaustion sequence for X by compact sets, $K_0 = \emptyset$ (by convention set $K_{-1} = \emptyset$), and $K_\nu \subset \operatorname{int}(K_{\nu+1})$ for all ν. For each ν apply Step 2 to $K = K_\nu \setminus \operatorname{int}(K_{\nu-1})$, $L = K_{\nu+1} \setminus \operatorname{int}(K_{\nu-2})$, and $\varepsilon = (\min L, n)/2$. We therefore obtain open sets $V_{i\nu} \subset W_{i\nu} \subset U_{i\nu}$ such that the family $\{W_{i\nu}\}$ is locally finite, $\{V_{i\nu}\}$ is a covering of X, and functions $f_{i\nu} \in F_q(U_{i\nu})$ as in Step 2 from above. Then define $f : X \to \mathbb{R}$ by $f(x) = \max\{f_{i\nu}(x); x \in W_{i\nu}\}$, where the maximum is taken over all indices i, ν such that $W_{i\nu} \ni x$. It is straightforward to see that f is continuous, $f \in F_q(X)$, and $g < f < g + \eta$.

Remark. — It can be shown that for $q > \dim(X)$ the set $F_q(X)$ is dense in the above sense even in $C^0(X, \mathbb{R})$.

From ([20], Lemma 4) we quote:

Lemma 2. — Let U be a complex space, V a complex manifold of pure dimension r, and $f \in F_{q+r}(U \times V)$ such that $\sup f < \infty$. Consider $g : U \to \mathbb{R}$ defined by

$$g(x) = \sup\{f(x, y); y \in V\}, \quad x \in U.$$

Assume that for some $x_0 \in U$ there is $y_0 \in V$ with $g(x_0) = f(x_0, y_0)$. Then $g \in G_q(x_0)$.

The key proposition for the proof of Theorem 1 is:

Proposition 4. — Let X and Y be complex manifolds such that Y is of pure dimension r and p-complete with corners. Let A be a $(q + r)$-concave subset in $X \times Y$ such that the natural projection $\pi : A \to X$ is...
proper. Then \(\pi(A) \) is \((q+p-1)\)-concave in \(X \). In particular, if \(Y \) is Stein (i.e. \(p = 1 \)), then \(\pi(A) \) is \(q \)-concave.

Proof. — Set \(m := q + p - 1 \). We may assume without any loss in generality that \(X \) is Stein. The statement of the proposition follows from the next claim.

CLAIM. — For every relatively compact Stein open subset \(U \) of \(X \), the set \(U \setminus \pi(A) \) is \(m \)-complete with corners.

In order to show this, consider a relatively compact open subset \(V \) of \(Y \) which is \(p \)-complete with corners and such that \(\pi^{-1}(\overline{U} \times \pi(A)) \subseteq \overline{U} \times V \). Then \(K := \overline{U} \times \partial V \) is compact and disjoint from \(A \). Now, since \(U \times Y \setminus A \) is \((m+r)\)-complete with corners by [20], there exists an exhaustion function \(\psi \in \mathcal{F}_{m+r}(U \times Y \setminus A) \).

Let \(\lambda := \max_K \psi \) and define \(\sigma : U \setminus \pi(A) \to \mathbb{R} \) by setting

\[
\sigma(x) = \max\{\psi(x,y), y \in V\}, x \in U \setminus \pi(A).
\]

Clearly \(\sigma \) is continuous. Consider \(\theta \) be a 1-convex exhaustion function on \(U \) and then define \(\varphi : U \setminus \pi(A) \to \mathbb{R} \) by setting

\[
\varphi = \theta + \max(\lambda, \sigma).
\]

Then \(\varphi \) is continuous and exhaustive. To conclude the proof, in view of Lemma 1, it suffices to show that \(\varphi \in G_m(x) \) for ever \(x \in U \setminus \pi(A) \). Indeed, two cases may occur:

a) If \(\sigma(x) > \lambda \), then \(\sigma \in G_m(x) \) by Lemma 2. Since \(\varphi = \sigma + \theta \) on a neighborhood of \(x \), we get \(\varphi \in G_m(x) \).

b) If \(\sigma(x) \leq \lambda \), then \(\varphi(x) \) and since \(\lambda + \theta \leq \varphi \) on \(U \setminus \pi(A) \), \(\varphi \in G_1(x) \), a fortiori, \(\varphi \in G_m(x) \).

The proof is complete. \(\square \)

(*) Denotes by \(\Delta^k(t) \) the open polydisc in \(\mathbb{C}^k \) of polyradius \((t, \ldots, t) \) centered at the origin. Let \(n \) and \(q \) be positive integers such that \(q < n \). We define the \((q, n-q)\) Hartogs figure in \(\mathbb{C}^n = \mathbb{C}^q \times \mathbb{C}^{n-q} \) to be the open set \(H_q \subset \mathbb{C}^n \) given by

\[
H_q := \left((\Delta^q(1) \setminus \overline{\Delta^q(t)}) \times \Delta^{n-q}(1) \right) \cup \left(\Delta^q(1) \times \Delta^{n-q}(s) \right)
\]

where \(0 < t, s < 1 \). Put \(\tilde{H}_q := \Delta^n(1) \), i.e. the envelope of holomorphy of \(H_q \).
Following [16] we say that a complex space \(Y \) possesses the meromorphic extension property (in bidimension \((q, n-q) \)) if every meromorphic map \(f : H_q \to Y \) extends to a meromorphic map \(\tilde{f} : \tilde{H}_q \to Y \).

By [16] every \(q \)-complete complex space possesses a meromorphic extension property in bidimension \((q, n-q) \) for every integer \(n > q \).

DEFINITION 2. — \(M \) be a complex manifold of pure dimension \(n \). We say that a closed subset \(A \subset M \) is pseudoconcave of order \(q \) if for every injective holomorphic map \(f : H_q \to M \) such that \(f(H_q) \cap A = \emptyset \), the set \(f(H_q) \cap A \) is also empty.

In this set-up, a variant of Proposition 4 for \(Y = \mathbb{C}^r \) is straightforward. See ([10], Lemma 3.6).

Also by ([24], Corollary 5) one has: A closed subset \(A \) of a pure dimensional complex manifold is pseudoconcave of order \(q \) if and only if \(A \) is \(q \)-concave.

Pseudoconcavity of order \(q \) is easier to handle; though it does not suit to complex spaces. One has the next examples:

1) Let \(M \) be a Stein manifold of pure dimension \(n \) and \(K \subset M \) a compact set. Then \(\hat{K} \setminus K \) is \((n-1)\)-concave in \(X \setminus K \). (See [23].)

2) The support of a closed positive current of bidegree \((q, q)\) on a pure dimensional complex manifold is \(q \)-concave. (This follows by [12], Corollary 2.6 and the above remark.)

3. Proof of Theorems 1 and 2.

Proof of Theorem 1.

We remark that it suffices to show that \(A \) is analytic and for this we distinguish three steps.

Step 1. — Here we reduce the proof to the case when \(X \subset \mathbb{C}^n \) is open. For this we need:

Lemma 3. — Let \(Z \) be a complex space, \(X \subset Z \) an analytic subset, and \(A \subset X \) a closed subset (not necessarily analytic). If \(A \) is \(q \)-concave in \(X \) and \(X \) is \(r \)-concave in \(Z \), then \(A \) is \((q+r)\)-concave in \(Z \).
Proof. — Let $x_0 \in A$ and U be a Stein open neighborhood of x_0 in Z such that $U \setminus X$ is r-complete with corners and $(U \setminus A) \cap X$ is q-complete with corners. Since $(U \setminus A) \cap X$ is analytic in $U \setminus A$, there is by Proposition 1 an open subset Ω of $U \setminus A$ which is q-complete with corners and contains $(U \setminus A) \cap X$. Therefore $U \setminus A = (U \setminus X) \cup \Omega$ is $(q+r)$-complete with corners by Proposition 3.

To complete Step 1, we let $x \in A$, then take a coordinate patch $\iota : U \to D \subset \mathbb{C}^n$ around $x \in X$ with D Stein; hence U is isomorphic to the closed analytic subset $\iota(U)$ of D, hence $\iota(U)$ is q-concave in $\iota(U)$. Put $p := q + N - n$. Note that $N - p = n - q$. Therefore $\iota(A \cap U)$ is p-concave in D by Lemma 3 since $\iota(U)$ is $(N-n)$-concave in D. On the other hand, $\iota(A \cap U)$ as a closed subset of D has its Hausdorff $(2N - 2p)$-measure locally finite.

Step 2). — We give here some general facts for further reduction of the proof of Theorem 1.

Let $E \subset \mathbb{C}^n$ be a locally closed set with $h^{2n-2q+1}(E) = 0$ and suppose $0 \in E$. Then there is a complex $(n-q)$-plane Γ through 0 such that $h^1(E \cap \Gamma) = 0$ ([21], Lemma 2). Hence for a suitable unitary transformation σ of \mathbb{C}^n we have $h^1(\sigma(E) \cap (\mathbb{C}^{n-q} \times \{0\})) = 0$. By ([21], Corollary 2), $\sigma(E) \cap (\partial B(r) \times \{0\})$ is empty for (h^1)-almost all $r > 0$. (Here $B(r)$ denotes the open unit ball in \mathbb{C}^{n-q} of radius r.) Since $\sigma(E)$ is also locally closed in \mathbb{C}^n and $0 \in \sigma(E)$, there is $r > 0$ arbitrary small and a polydisc P in \mathbb{C}^q centered at the origin such that $\sigma(E) \cap (\overline{B(r)} \times P)$ is closed in $\overline{B(r)} \times P$ and $\sigma(E) \cap (\partial B(r) \times P)$ is empty. In particular, the canonically induced projection map π from $\sigma(E) \cap (B(r) \times P)$ into $B(r)$ is proper.

If furthermore $h^{2n-2q}(E) < \infty$, then $\pi^{-1}(z)$ is finite for (h^{2n-2q})-almost all $z \in B(r)$ ([21], Corollary 4).

Recall that a set $\Gamma \subset \mathbb{C}^n$ is said to be locally pluripolar if for every $a \in \Gamma$ there is a connected neighborhood $U \ni a$ and a plurisubharmonic function φ on U, $\varphi \neq -\infty$, such that $\Gamma \cap U \subset \{ \varphi = -\infty \}$. In fact, if Γ is locally pluripolar then by [17] one can take $U = \mathbb{C}^n$, so Γ is pluripolar. Note that for $n = 1$ pluripolarity of a set in \mathbb{C} means that it is of zero-capacity as used in [18]. Also it is easy to check that for $U \subset \mathbb{C}^n$ open and $S \subset \mathbb{C}^n$ of zero Lebesgue measure, the set $U \setminus S$ is not pluripolar.

Step 3). — Here we conclude the proof.

By Steps 1, 2, and Proposition 4 it remains to show the next lemma.
LEMMA 4. — Let $U \subset \mathbb{C}^{n-q}$ be an open set, Δ the open unit disc in \mathbb{C}, and $A \subset U \times \Delta^q$ a closed subset such that the canonical projection $\pi : A \to U$ is proper. If A is q-concave and $\pi^{-1}(z)$ is finite for z in a non pluripolar subset of U, then A is analytic of pure dimension $n-q$.

Proof. — For $q = 1$ this is precisely the lemma due to Hartogs-Oka-Nishino [18]. For $q > 1$ we proceed as follows. Notice that it suffices to show the analyticity of A. In order to do this we let $p_j : \Delta^q \to \Delta$, $j = 1, \ldots, q$, denote the projection onto the j^{th} component of Δ^q, then let $\sigma_j : A \to U \times \Delta$ naturally induced by p_j. Then σ_j is proper and Proposition 4 implies that $\sigma_j(A)$ is 1-concave in $U \times \Delta$ for all indices $j = 1, \ldots, q$. Furthermore if we consider $\pi_j : \sigma_j(A) \to U$ canonically induced, we arrive at the case $q = 1$. So the sets $\sigma_j(A)$ are analytic for all j.

Now, if $\iota : U \times \Delta^q \to (U \times \Delta) \times \cdots \times (U \times \Delta)$ (the product is taken q-times) is given by $\iota(z, t_1, \ldots, t_q) = ((z, t_1), \ldots, (z, t_q))$, then $A = \iota^{-1}(\sigma_1(A) \times \cdots \sigma_q(A))$, whence the lemma. Thus the proof of Theorem 1.

Proof of Theorem 2.

Denote by $A^0 :=$ the set of points $x \in A$ such that f extends meromorphically onto a neighborhood of x. Then $A' := A \setminus A^0$ is closed and as the complement to A is locally connected in M these local meromorphic continuations of f in points of A^0 glue together to a unique meromorphic map from $M \setminus A'$ into Y.

Now, we assert that A' is pseudoconcave of order q. For this we let $\Phi : \hat{H}_q \to M$ be an injective holomorphic map with $\Phi(H_q) \cap A' = \emptyset$. Then $f \circ \Phi$ is meromorphic from H_q into Y, hence it extends to \hat{H}_q; therefore f extends over $\Phi(\hat{H}_q)$, and by definition $\Phi(\hat{H}_q) \subset A^0$; whence the desired assertion.

Finally, by Theorem 1, if A' is not the empty set, then A' is analytic of pure dimension $n-q$. But this contradicts the hypothesis, whence the proof.
4. A final remark.

Motivated by M. Peternel's work ([20], §7) we give:

DEFINITION 3. Let X be a complex space of pure dimension n. A closed subset A of X is said to be q-pseudoconcave if there is an analytic subset $B \subset X$ such that

1) $A \setminus B = A$.

2) For each point $x \in A \setminus B$ there is a locally closed analytic subset Y of X which passes through x, $Y \subset A$, and Y is a complex manifold of dimension $n-q$.

As an example, if A is analytic and $\dim_x A \geq n-q$, $\forall x \in A$, then A is q-pseudoconcave.

Let now r be a non-negative integer and suppose X is purely dimensional. We say that X has property (E_r), if there is $\varphi \in F_{n+r}(X \times X \setminus \Delta_X)$, where Δ_X is the diagonal set of $X \times X$, such that $\varphi(x,\nu) \to +\infty$ if $x_\nu \to x$, $x_\nu \neq x$, $\forall x \in X$. Condition (E_r) holds locally on X if every point of X admits an open neighborhood U which satisfies (E_r).

The next proposition is an easy consequence of ([20], Lemma 9).

PROPOSITION 5. Let X be a pure dimensional complex space such that (E_r) holds locally. Then every q-pseudoconcave subset of X is $(q+r)$-concave.

The importance of the condition (E_r) resides in the fact that, for example, if a Stein space X fulfils (E_0), then every locally Stein open subset of X is Stein. It is easy to check for a Stein manifold that (E_0) holds. However, this fails, in general, if we allow singularities. For example, we let X be the Segre cone in \mathbb{C}^4, $X = \{xy = zw\}$. Clearly the hypersurface $A = \{x = z = 0\}$ is 1-pseudoconcave. Now, if (E_0) would hold locally on X, then A will be 1-concave; and as X has isolated singularities $X \setminus A$ will be Stein. But this is absurd since $X \setminus A$ is biholomorphic to $(\mathbb{C}^2 \setminus \{0\}) \times \mathbb{C}$.

COROLLARY 4. If X is a complex manifold, then every q-pseudoconcave subset of X is also q-concave.

Example 3. For every positive integer q there is an open subset X of \mathbb{C}^{q+1} and a q-concave subset $A \subset X$ which is **not** q-pseudoconcave.
To do this we consider a compact subset K of \mathbb{C}^2 such that $\hat{K} \setminus K$ contains no analytic disc. See [26] for the existence of K. Put $X := (\mathbb{C}^2 \setminus K) \times \mathbb{C}^{q-1}$ and $A := (\hat{K} \setminus K) \times \{0\}$. Then A is not q-pseudoconcave in X; however, by Example 1 in §2 and Corollary 3 it is easily seen that $\hat{K} \setminus K$ is q-concave in X.

The corresponding version of Theorem 1 reads:

Theorem 3. — *Let A be a closed subset of a pure n-dimensional complex space X such that A is q-pseudoconcave and its Hausdorff $(2n-2q)$-measure is locally finite. Then A is analytic of pure dimension $n-q$.*

Proof. — If $\iota : U \rightarrow D$ is a local path of X, where D is an open subset of \mathbb{C}^N, then $\iota(A \cap U)$ is $(N-n+q)$-pseudoconcave in D. Now we conclude by the above corollary and Theorem 1.

Acknowledgements. — A part of this work has been supported by an ANSTI grant No. 5232/1999.

BIBLIOGRAPHY

Manuscrit reçu le 16 juin 1999,
accepté le 17 janvier 2000.

Viorel VâJâitu,
Institute of Mathematics of the Romanian Academy
P.O. Box 1–764
RO–70700 Bucharest (Romania).
vvajaitu@stoilow.imar.ro