Nous étendons la borne inférieure semi-classique due à Li-Yau pour la somme des premières valeurs propres du laplacien de Dirichlet aux laplaciens de Dirichlet avec un champ magnétique constant. Notre méthode repose sur une nouvelle inégalité pour les champs magnétiques constants.
The Li-Yau semiclassical lower bound for the sum of the first eigenvalues of the Dirichlet–Laplacian is extended to Dirichlet– Laplacians with constant magnetic fields. Our method involves a new diamagnetic inequality for constant magnetic fields.
@article{AIF_2000__50_3_891_0, author = {Erd\"os, L\'aszl\'o and Loss, Michael and Vougalter, Vitali}, title = {Diamagnetic behavior of sums {Dirichlet} eigenvalues}, journal = {Annales de l'Institut Fourier}, pages = {891--907}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {3}, year = {2000}, doi = {10.5802/aif.1777}, zbl = {0957.35104}, mrnumber = {2001g:35201}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1777/} }
TY - JOUR AU - Erdös, László AU - Loss, Michael AU - Vougalter, Vitali TI - Diamagnetic behavior of sums Dirichlet eigenvalues JO - Annales de l'Institut Fourier PY - 2000 SP - 891 EP - 907 VL - 50 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1777/ DO - 10.5802/aif.1777 LA - en ID - AIF_2000__50_3_891_0 ER -
%0 Journal Article %A Erdös, László %A Loss, Michael %A Vougalter, Vitali %T Diamagnetic behavior of sums Dirichlet eigenvalues %J Annales de l'Institut Fourier %D 2000 %P 891-907 %V 50 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1777/ %R 10.5802/aif.1777 %G en %F AIF_2000__50_3_891_0
Erdös, László; Loss, Michael; Vougalter, Vitali. Diamagnetic behavior of sums Dirichlet eigenvalues. Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 891-907. doi : 10.5802/aif.1777. https://aif.centre-mersenne.org/articles/10.5802/aif.1777/
[AHS78] Schrödinger operators with magnetic fields, I. General interactions, Duke Math. J., 45 (1978), 847-883. | MR | Zbl
, and ,[B72] Convex operator functions, Math. USSR. Sb., 17 (1972), 269-277. | Zbl
,[CFKS87] Schrödinger operators (with application to Quantum Mechanics and Global Geometry), Springer 1987. | Zbl
, , and ,[HSU77] Domination of semigroups and generalizations of Kato's inequality, Duke Math. J., 44 (1977), 893-904. | MR | Zbl
, and ,[Iv98] Microlocal Analysis and Precise Spectral Asymptotics, Springer, 1998. | MR | Zbl
,[K72] Schrödinger operators with singular potentials, Isr. J. Math., 13 (1972), 135-148. | MR | Zbl
,[L80] The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sym. Pure Math., 36 (1980), 241-252. | MR | Zbl
,[LL97] Analysis, Graduate Studies in Mathematics, Volume 14, American Mathematical Society (1997). | MR | Zbl
, ,[LT75] Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett., 35 (1975), 687.
, ,[LT76] Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Math. Phys., Essays in Honor of Valentine Bargmann., Princeton (1976). | Zbl
, ,[LW99] Sharp Lieb-Thirring inequalities in high dimensions, to appear in Acta Math. | Zbl
, ,[LY83] On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318. | MR | Zbl
, ,[RS79] Methods of Modern Mathematical Physics, III. Scattering Theory, Academic Press, 1979. | MR | Zbl
, ,[S79] Functional integration and Quantum Physics, Academic Press, 1979. | MR | Zbl
,[S77, 79] An abstract Kato inequality for generators of positivity preserving semigroups, Ind. Math. J., 26 (1977), 1067-1073. Kato's inequality and the comparison of semigroups, J. Funct. Anal., 32 (1979), 97-101. | MR | Zbl
,Cité par Sources :