Soit la catégorie de foncteurs de la catégorie des -espaces vectoriels de dimension finie dans la catégorie des -espaces vectoriels. Nous étudions la structure du foncteur , où est un foncteur fini et désigne le foncteur injectif . Un théorème de détection de sous-foncteurs de est démontré, ce qui est la base de la démonstration que le foncteur est artinien de type un.
The paper studies the structure of functors in the category of functors from finite dimensional -vector spaces to -vector spaces, where is a finite functor and is the injective functor . A detection theorem is proved for sub-functors of such functors, which is the basis of the proof that the functors are artinian of type one.
@article{AIF_2000__50_3_781_0, author = {Powell, Geoffrey M. L.}, title = {The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces}, journal = {Annales de l'Institut Fourier}, pages = {781--805}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {3}, year = {2000}, doi = {10.5802/aif.1773}, zbl = {0958.18006}, mrnumber = {2001h:20065}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1773/} }
TY - JOUR AU - Powell, Geoffrey M. L. TI - The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces JO - Annales de l'Institut Fourier PY - 2000 SP - 781 EP - 805 VL - 50 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1773/ DO - 10.5802/aif.1773 LA - en ID - AIF_2000__50_3_781_0 ER -
%0 Journal Article %A Powell, Geoffrey M. L. %T The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces %J Annales de l'Institut Fourier %D 2000 %P 781-805 %V 50 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1773/ %R 10.5802/aif.1773 %G en %F AIF_2000__50_3_781_0
Powell, Geoffrey M. L. The structure of the tensor product of ${\mathbb {F}}_2[-]$ with a finite functor between ${\mathbb {F}}_2$-vector spaces. Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 781-805. doi : 10.5802/aif.1773. https://aif.centre-mersenne.org/articles/10.5802/aif.1773/
[J] The representation theory of the symmetric groups, Lecture Notes in Math., 682 (1978). | MR | Zbl
,[J2] The decomposition of tensors over finite fields of prime characteristic, Math. Zeit., 172 (1980), 161-178. | EuDML | MR | Zbl
,[JK] The Representation Theory of the Symmetric Groups, Ency. Math. Appl., Addison-Wesley, Vol. 16, 1981. | MR | Zbl
, ,[K1] Generic representations of the finite general linear groups and the Steenrod algebra : I, Amer. J. Math., 116 (1993), 327-360. | MR | Zbl
,[K2] Generic representations of the finite general linear groups and the Steenrod algebra : II, K-Theory, 8 (1994), 395-426. | MR | Zbl
,[K3] Generic representations of the finite general linear groups and the Steenrod algebra : III, K-Theory, 9 (1995), 273-303. | MR | Zbl
,[PS] Extensions de foncteurs simples, K-theory, 15 (1998), 269-291. | MR | Zbl
, ,[P1] The Artinian conjecture for I ⊗ I, J. Pure Appl. Alg., 128 (1998), 291-310. | Zbl
, with an Appendix by L. SCHWARTZ,[P2] Polynomial filtrations and Lannes' T-functor, K-Theory, 13 (1998), 279-304. | MR | Zbl
,[P3] The structure of Ī⊗Λn in generic representation theory, J. Alg., 194 (1997), 455-466. | MR | Zbl
,[P4] The structure of the indecomposable injectives in generic representation theory, Trans. Amer. Math. Soc., 350 (1998), 4167-4193. | MR | Zbl
,[P5] On artinian objects in the category of functors between ℙ2-vector spaces, to appear in Proceedings of Euroconference 'Infinite Length Modules', Bielefeld, 1998. | Zbl
,Cité par Sources :