Nous étudons sur des exemples significatifs l’intersection entre le traitement du signal et l’analyse fonctionnelle.
The interaction between signal processing and functional analysis is discussed on some relevant examples.
@article{AIF_2000__50_2_593_0,
author = {Meyer, Yves},
title = {Le traitement du signal et l'analyse math\'ematique},
journal = {Annales de l'Institut Fourier},
pages = {593--632},
year = {2000},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {50},
number = {2},
doi = {10.5802/aif.1766},
zbl = {0986.42016},
mrnumber = {2001m:94013},
language = {fr},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1766/}
}
TY - JOUR AU - Meyer, Yves TI - Le traitement du signal et l'analyse mathématique JO - Annales de l'Institut Fourier PY - 2000 SP - 593 EP - 632 VL - 50 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1766/ DO - 10.5802/aif.1766 LA - fr ID - AIF_2000__50_2_593_0 ER -
%0 Journal Article %A Meyer, Yves %T Le traitement du signal et l'analyse mathématique %J Annales de l'Institut Fourier %D 2000 %P 593-632 %V 50 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1766/ %R 10.5802/aif.1766 %G fr %F AIF_2000__50_2_593_0
Meyer, Yves. Le traitement du signal et l'analyse mathématique. Annales de l'Institut Fourier, Tome 50 (2000) no. 2, pp. 593-632. doi: 10.5802/aif.1766
[1] , , Wavelets and multiscale signal processing., Appl. Math & Math. Comp., Chapman & Hall ed., 11 (1995). | Zbl | MR
[2] , Ten lectures on wavelets, SIAM, Philadelphia, 1992. | Zbl | MR
[3] , A wavelet tour of signal processing, Academic Press, 1988. | Zbl
[4] , , Wavelets and subband coding, Prentice Hall PTR, Englewood Cliffs, NJ 07632, 1995. | Zbl
[5] , Wavelets and operators, Vol. 1,2 and 3, Cambridge University Press, 1992. | Zbl
[6] , Sampling, data transmission and the Nyquist rate, Proceedings of the IEEE, vol. 55, 10 (1967).
[7] , The differentiability of the Riemann's function at certain rational multiples of π, Amer. J. Math., 92 (1970), 33-35 et 93 (1971), 33-41. | Zbl | MR
[8] , , Pointwise analysis of Riemann's ‘non differentiable’ function, Inventiones Mathematicae, 105 (1991), 157-176. | Zbl | EuDML
[9] , Differentiability of Riemann's function, Proc. Japan Acad., Ser. A. Math. Sci, 57, vol. 10 (1981), 492-495. | Zbl | MR
[10] , The spectrum of singularities of the Riemann's function, Rev. Math. Iberoamericana, 12 (1996), 441-490. | Zbl | MR
[11] , , Wavelets methods for pointwise regularity and local oscillations of functions, Memoirs of the AMS, 123 (1996). | Zbl
Cité par Sources :



