Linear hamiltonian circle actions that generate minimal Hilbert bases
Annales de l'Institut Fourier, Volume 50 (2000) no. 1, pp. 285-315.

The orbit space of a linear Hamiltonian circle action and the reduced orbit space, at zero, are examples of singular Poisson spaces. The orbit space inherits the Poisson algebra of functions invariant under the linear circle action and the reduced orbit space inherits the Poisson algebra obtained by restricting the invariant functions to the reduced space. Both spaces reside inside smooth manifolds, which in turn inherit almost Poisson structures from the Poisson varieties. In this paper we consider the question whether among these almost Poisson structures one can find algebras satisfying Jacobi identity. It is shown that this is not the case when the weights of the action satisfy a simple relation. A consequence of this relation is also that the number of generators needed to generate the algebra of invariant functions is minimal.

L’espace des orbites d’une action hamiltonienne linéaire du cercle et l’espace des orbites réduit en zéro, sont des exemples d’espaces de Poisson singuliers. L’espace des orbites hérite de l’algèbre de Poisson des fonctions qui sont invariantes pour l’action linéaire du cercle et l’espace des orbites réduit hérite de l’algèbre de Poisson obtenue par restriction à l’espace réduit des fonctions invariantes. Ces espaces vivent dans certaines variétés différentiables qui héritent aussi des quasi–structures de Poisson des variétés de Poisson. Dans cet article nous considérons la question de savoir si on peut trouver des algèbres satisfaisant l’identité de Jacobi parmi ces quasi-structures de Poisson. Nous prouvons que ce n’est pas le cas quand les poids de l’action satisfont à une relation simple. Une conséquence de cette relation est aussi que le nombre des générateurs qui sont nécessaires pour la génération de l’algèbre de fonctions invariantes est minimal.

@article{AIF_2000__50_1_285_0,
     author = {Egilsson, \'Ag\'ust Sverrir},
     title = {Linear hamiltonian circle actions that generate minimal {Hilbert} bases},
     journal = {Annales de l'Institut Fourier},
     pages = {285--315},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {1},
     year = {2000},
     doi = {10.5802/aif.1755},
     zbl = {0973.53067},
     mrnumber = {2001k:53156},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1755/}
}
TY  - JOUR
AU  - Egilsson, Ágúst Sverrir
TI  - Linear hamiltonian circle actions that generate minimal Hilbert bases
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 285
EP  - 315
VL  - 50
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1755/
DO  - 10.5802/aif.1755
LA  - en
ID  - AIF_2000__50_1_285_0
ER  - 
%0 Journal Article
%A Egilsson, Ágúst Sverrir
%T Linear hamiltonian circle actions that generate minimal Hilbert bases
%J Annales de l'Institut Fourier
%D 2000
%P 285-315
%V 50
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1755/
%R 10.5802/aif.1755
%G en
%F AIF_2000__50_1_285_0
Egilsson, Ágúst Sverrir. Linear hamiltonian circle actions that generate minimal Hilbert bases. Annales de l'Institut Fourier, Volume 50 (2000) no. 1, pp. 285-315. doi : 10.5802/aif.1755. https://aif.centre-mersenne.org/articles/10.5802/aif.1755/

[1] J. Arms, R. Cushman and M. Gotay A universal reduction procedure for Hamiltonian group actions, in The Geometry of Hamiltonian Systems, Mathematical Sciences Research Institute Publications 22, Springer-Verlag 1991, 33-51. | MR | Zbl

[2] L. Bates, E. Lerman Proper group actions and symplectic stratified spaces, Pacific Journal of Mathematics, 181, n° 2 (1997), 201-229. | MR | Zbl

[3] Ágúst S. Egilsson On embedding a stratified symplectic space in a smooth Poisson manifold, Ph. D. Thesis 1995, University of California at Berkeley.

[4] Ágúst S. Egilsson On embedding the 1:1:2 resonance space in a Poisson manifold, Electronic Research Announcements of the American Mathematical Society, 1, n° 2 (1995), 48-56. | EuDML | MR | Zbl

[5] A. Lichnerowicz Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, 12 (1977), 253-300. | MR | Zbl

[6] B. Malgrange Le théorème de préparation en géométrie différentiable, Séminaire Henri Cartan, 15e année, 1962/1963, exposés 11-13, 22. | Numdam | Zbl

[7] J. Marsden and A. Weinstein Reduction of symplectic manifolds with symmetry, Reports on Mathematical Physics, 5 (1974), 121-130. | MR | Zbl

[8] J.N. Mather Stability of C∞ mappings: I. The division theorem, Annals of Mathematics, 87 (1968), 89-104. | MR | Zbl

[9] J.N. Mather Differentiable invariants, Topology, 16 (1977), 145-155. | MR | Zbl

[10] J.K. Moser Lectures on Hamiltonian systems, Memoirs of the American Mathematical Society, 81 (1968). | MR | Zbl

[11] A. Nijenhuis Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indagationes Math., 17 (1955), 390-403. | MR | Zbl

[12] J.A. Schouten On the differential operators of first order in tensor calculus, Convengo di Geometria Differenziale, (1953), 1-7. | Zbl

[13] G.W. Schwarz Smooth functions invariant under the action of a compact Lie group, Topology, 14 (1975), 63-68. | MR | Zbl

[14] Ana Cannas Da Silva and Alan Weinstein Geometric Models for Noncommutative Algebras, Berkeley Mathematical Lecture Notes, Volume 10, 1999. | MR | Zbl

[15] R. Sjamaar and E. Lerman Stratified symplectic spaces and reduction, Annals of Mathematics, 134 (1991), 376-422. | MR | Zbl

[16] H. Weyl The Classical Groups, Princeton University Press, 1946. | Zbl

Cited by Sources: