Soit un espace symétrique non compact avec décomposition d’Iwasawa . L’homomorphisme d’Harish-Chandra est un homomorphisme explicite entre l’algèbre des opérateurs différentiels sur et l’algèbre des polynômes sur invariante par rapport à l’action du groupe de Weyl de la paire . Le résultat principal de cet article est une généralisation dans le cas quantique de l’homomorphisme d’Harish-Chandra pour symétrique hermitien (classique).
Let a noncompact symmetric space with Iwasawa decomposition . The Harish-Chandra homomorphism is an explicit homomorphism between the algebra of invariant differential operators on and the algebra of polynomials on that are invariant under the Weyl group action of the pair . The main result of this paper is a generalization to the quantum setting of the Harish-Chandra homomorphism in the case of being an hermitian (classical) symmetric space
@article{AIF_1999__49_4_1179_0, author = {Baldoni, Welleda and Frajria, Pierluigi M\"oseneder}, title = {The {Harish-Chandra} homomorphism for a quantized classical hermitian symmetric pair}, journal = {Annales de l'Institut Fourier}, pages = {1179--1214}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {4}, year = {1999}, doi = {10.5802/aif.1713}, zbl = {0932.17014}, mrnumber = {2001d:17010}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1713/} }
TY - JOUR AU - Baldoni, Welleda AU - Frajria, Pierluigi Möseneder TI - The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair JO - Annales de l'Institut Fourier PY - 1999 SP - 1179 EP - 1214 VL - 49 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1713/ DO - 10.5802/aif.1713 LA - en ID - AIF_1999__49_4_1179_0 ER -
%0 Journal Article %A Baldoni, Welleda %A Frajria, Pierluigi Möseneder %T The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair %J Annales de l'Institut Fourier %D 1999 %P 1179-1214 %V 49 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1713/ %R 10.5802/aif.1713 %G en %F AIF_1999__49_4_1179_0
Baldoni, Welleda; Frajria, Pierluigi Möseneder. The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair. Annales de l'Institut Fourier, Tome 49 (1999) no. 4, pp. 1179-1214. doi : 10.5802/aif.1713. https://aif.centre-mersenne.org/articles/10.5802/aif.1713/
[1] Parabolic subalgebras of quantized enveloping algebras, Preprint.
, and ,[2] Groupes et algèbres de Lie, Hermann, Paris, 1968.
,[3] The annihilator of invariant vectors for a quantized parabolic subalgebra, Preprint.
,[4] A guide to L-operators, Rend. Mat., (7) 18 (1998), 65-85. | MR | Zbl
,[5] Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978. | Zbl
,[6] Groups and geometric analysis, Academic Press, 1984.
,[7] Lectures on quantum groups, Graduate studies in Mathematics, vol. 6, A.M.S., 1995. | MR | Zbl
,[8] Quantum groups and their primitive ideals, Springer, Berlin, 1995. | MR | Zbl
,[9] Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra, 153 (1992), 289-317. | MR | Zbl
and ,[10] The Capelli identity, tube domains and the generalized Laplace transform, Adv. in Math., 87 (1991), 71-92. | MR | Zbl
and ,[11] Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., 70 (1988), 237-249. | MR | Zbl
,[12] Quantum groups at root of 1, Geom. Dedicata, 35 (1990), 89-114. | MR | Zbl
,[13] Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1 (1990), 193-225. | MR | Zbl
, , and ,[14] The analytic continuation of the discrete series II, Trans. Amer. Math. Soc., 251 (1979), 19-37. | MR | Zbl
,Cité par Sources :