Contact topology and the structure of 5-manifolds with π 1 = 2
Annales de l'Institut Fourier, Volume 48 (1998) no. 4, pp. 1167-1188.

We prove a structure theorem for closed, orientable 5-manifolds M with fundamental group π 1 (M)= 2 and second Stiefel-Whitney class equal to zero on H 2 (M). This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain 2 -quotients of S 2 ×S 3 .

Nous démontrons un théorème relatif à la structure des variétés M fermées, orientables, de dimension 5 avec groupe fondamental π 1 (M)= 2 et deuxième classe de Stiefel-Whitney égale à zéro sur H 2 (M). Ce théorème est alors utilisé pour construire des structures de contact sur ces variétés en appliquant la chirurgie de contact à de faux espaces projectifs et certains quotients de S 2 ×S 3 par une involution.

@article{AIF_1998__48_4_1167_0,
     author = {Geiges, Hansj\"org and Thomas, Charles B.},
     title = {Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$},
     journal = {Annales de l'Institut Fourier},
     pages = {1167--1188},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {4},
     year = {1998},
     doi = {10.5802/aif.1653},
     zbl = {0912.57020},
     mrnumber = {2000a:57069},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1653/}
}
TY  - JOUR
AU  - Geiges, Hansjörg
AU  - Thomas, Charles B.
TI  - Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 1167
EP  - 1188
VL  - 48
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1653/
DO  - 10.5802/aif.1653
LA  - en
ID  - AIF_1998__48_4_1167_0
ER  - 
%0 Journal Article
%A Geiges, Hansjörg
%A Thomas, Charles B.
%T Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$
%J Annales de l'Institut Fourier
%D 1998
%P 1167-1188
%V 48
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1653/
%R 10.5802/aif.1653
%G en
%F AIF_1998__48_4_1167_0
Geiges, Hansjörg; Thomas, Charles B. Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$. Annales de l'Institut Fourier, Volume 48 (1998) no. 4, pp. 1167-1188. doi : 10.5802/aif.1653. https://aif.centre-mersenne.org/articles/10.5802/aif.1653/

[1] M.F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes : II, Applications, Ann. of Math. (2), 88 (1968), 451-491. | MR | Zbl

[2] K.S. Brown, Cohomology of Groups, Springer, 1982. | MR | Zbl

[3] Y. Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math., 1 (1990), 29-46. | MR | Zbl

[4] H. Geiges, Contact structures on 1-connected 5-manifolds, Mathematika, 38 (1991), 303-311. | MR | Zbl

[5] H. Geiges, Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc., 121 (1997), 455-464. | MR | Zbl

[6] H. Geiges, Applications of contact surgery, Topology, 36 (1997), 1193-1220. | MR | Zbl

[7] C.H. Giffen, Smooth homotopy projective spaces, Bull. Amer. Math. Soc., 75 (1969), 509-513. | MR | Zbl

[8] F. Hirzebruch and K.H. Mayer, O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., 57, Springer, 1968. | MR | Zbl

[9] H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv., 14 (1941/1942), 257-309. | JFM | MR | Zbl

[10] R.C. Kirby and L.C. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Ann. of Math. Studies, 88, Princeton University Press, 1977. | MR | Zbl

[11] R.C. Kirby and L.R. Taylor, Pin structures on low-dimensional manifolds, in : Geometry of Low-Dimensional Manifolds 2, (S.K. Donaldson and C.B. Thomas, eds.), London Math. Soc. Lecture Note Ser., 151, Cambridge University Press (1990), 177-242. | MR | Zbl

[12] A.A. Kosinski, Differential Manifolds, Academic Press, 1993. | MR | Zbl

[13] S. López De Medrano, Involutions on Manifolds, Ergeb. Math. Grenzgeb., 59, Springer, 1971. | MR | Zbl

[14] R. Lutz and C. Meckert, Structures de contact sur certaines sphères exotiques, C.R. Acad. Sci. Paris, Sér. I, Math., 282 (1976), 591-593. | MR | Zbl

[15] J. Martinet, Formes de contact sur les variétés de dimension 3, in : Proc. Liverpool Singularities Sympos. II (C.T.C. Wall, ed.), Lecture Notes in Math., 209, Springer (1971), 142-163. | MR | Zbl

[16] C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb., 69, Springer (1972). | MR | Zbl

[17] C.B. Thomas, Contact structures on (n-1)-connected (2n+1)-manifolds, Banach Center Publ., 18 (1986), 255-270. | MR | Zbl

[18] C.T.C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. (2), 84 (1966), 217-276. | MR | Zbl

[19] A. Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J., 20 (1991), 241-251. | MR | Zbl

Cited by Sources: