We prove a structure theorem for closed, orientable 5-manifolds with fundamental group and second Stiefel-Whitney class equal to zero on . This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain -quotients of .
Nous démontrons un théorème relatif à la structure des variétés fermées, orientables, de dimension 5 avec groupe fondamental et deuxième classe de Stiefel-Whitney égale à zéro sur . Ce théorème est alors utilisé pour construire des structures de contact sur ces variétés en appliquant la chirurgie de contact à de faux espaces projectifs et certains quotients de par une involution.
@article{AIF_1998__48_4_1167_0, author = {Geiges, Hansj\"org and Thomas, Charles B.}, title = {Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$}, journal = {Annales de l'Institut Fourier}, pages = {1167--1188}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {4}, year = {1998}, doi = {10.5802/aif.1653}, zbl = {0912.57020}, mrnumber = {2000a:57069}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1653/} }
TY - JOUR AU - Geiges, Hansjörg AU - Thomas, Charles B. TI - Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$ JO - Annales de l'Institut Fourier PY - 1998 SP - 1167 EP - 1188 VL - 48 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1653/ DO - 10.5802/aif.1653 LA - en ID - AIF_1998__48_4_1167_0 ER -
%0 Journal Article %A Geiges, Hansjörg %A Thomas, Charles B. %T Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$ %J Annales de l'Institut Fourier %D 1998 %P 1167-1188 %V 48 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1653/ %R 10.5802/aif.1653 %G en %F AIF_1998__48_4_1167_0
Geiges, Hansjörg; Thomas, Charles B. Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$. Annales de l'Institut Fourier, Volume 48 (1998) no. 4, pp. 1167-1188. doi : 10.5802/aif.1653. https://aif.centre-mersenne.org/articles/10.5802/aif.1653/
[1] A Lefschetz fixed point formula for elliptic complexes : II, Applications, Ann. of Math. (2), 88 (1968), 451-491. | MR | Zbl
and ,[2] Cohomology of Groups, Springer, 1982. | MR | Zbl
,[3] Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math., 1 (1990), 29-46. | MR | Zbl
,[4] Contact structures on 1-connected 5-manifolds, Mathematika, 38 (1991), 303-311. | MR | Zbl
,[5] Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc., 121 (1997), 455-464. | MR | Zbl
,[6] Applications of contact surgery, Topology, 36 (1997), 1193-1220. | MR | Zbl
,[7] Smooth homotopy projective spaces, Bull. Amer. Math. Soc., 75 (1969), 509-513. | MR | Zbl
,[8] O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., 57, Springer, 1968. | MR | Zbl
and ,[9] Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv., 14 (1941/1942), 257-309. | JFM | MR | Zbl
,[10] Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Ann. of Math. Studies, 88, Princeton University Press, 1977. | MR | Zbl
and ,[11] Pin structures on low-dimensional manifolds, in : Geometry of Low-Dimensional Manifolds 2, (S.K. Donaldson and C.B. Thomas, eds.), London Math. Soc. Lecture Note Ser., 151, Cambridge University Press (1990), 177-242. | MR | Zbl
and ,[12] Differential Manifolds, Academic Press, 1993. | MR | Zbl
,[13] Involutions on Manifolds, Ergeb. Math. Grenzgeb., 59, Springer, 1971. | MR | Zbl
,[14] Structures de contact sur certaines sphères exotiques, C.R. Acad. Sci. Paris, Sér. I, Math., 282 (1976), 591-593. | MR | Zbl
and ,[15] Formes de contact sur les variétés de dimension 3, in : Proc. Liverpool Singularities Sympos. II (C.T.C. Wall, ed.), Lecture Notes in Math., 209, Springer (1971), 142-163. | MR | Zbl
,[16] Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb., 69, Springer (1972). | MR | Zbl
and ,[17] Contact structures on (n-1)-connected (2n+1)-manifolds, Banach Center Publ., 18 (1986), 255-270. | MR | Zbl
,[18] Surgery of non-simply-connected manifolds, Ann. of Math. (2), 84 (1966), 217-276. | MR | Zbl
,[19] Contact surgery and symplectic handlebodies, Hokkaido Math. J., 20 (1991), 241-251. | MR | Zbl
,Cited by Sources: