We prove a structure theorem for closed, orientable 5-manifolds with fundamental group and second Stiefel-Whitney class equal to zero on . This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain -quotients of .
Nous démontrons un théorème relatif à la structure des variétés fermées, orientables, de dimension 5 avec groupe fondamental et deuxième classe de Stiefel-Whitney égale à zéro sur . Ce théorème est alors utilisé pour construire des structures de contact sur ces variétés en appliquant la chirurgie de contact à de faux espaces projectifs et certains quotients de par une involution.
@article{AIF_1998__48_4_1167_0,
author = {Geiges, Hansj\"org and Thomas, Charles B.},
title = {Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$},
journal = {Annales de l'Institut Fourier},
pages = {1167--1188},
year = {1998},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {48},
number = {4},
doi = {10.5802/aif.1653},
zbl = {0912.57020},
mrnumber = {2000a:57069},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1653/}
}
TY - JOUR
AU - Geiges, Hansjörg
AU - Thomas, Charles B.
TI - Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$
JO - Annales de l'Institut Fourier
PY - 1998
SP - 1167
EP - 1188
VL - 48
IS - 4
PB - Association des Annales de l’institut Fourier
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1653/
DO - 10.5802/aif.1653
LA - en
ID - AIF_1998__48_4_1167_0
ER -
%0 Journal Article
%A Geiges, Hansjörg
%A Thomas, Charles B.
%T Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$
%J Annales de l'Institut Fourier
%D 1998
%P 1167-1188
%V 48
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1653/
%R 10.5802/aif.1653
%G en
%F AIF_1998__48_4_1167_0
Geiges, Hansjörg; Thomas, Charles B. Contact topology and the structure of 5-manifolds with $\pi _1={\mathbb {Z}}_2$. Annales de l'Institut Fourier, Tome 48 (1998) no. 4, pp. 1167-1188. doi: 10.5802/aif.1653
[1] and , A Lefschetz fixed point formula for elliptic complexes : II, Applications, Ann. of Math. (2), 88 (1968), 451-491. | Zbl | MR
[2] , Cohomology of Groups, Springer, 1982. | Zbl | MR
[3] , Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math., 1 (1990), 29-46. | Zbl | MR
[4] , Contact structures on 1-connected 5-manifolds, Mathematika, 38 (1991), 303-311. | Zbl | MR
[5] , Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc., 121 (1997), 455-464. | Zbl | MR
[6] , Applications of contact surgery, Topology, 36 (1997), 1193-1220. | Zbl | MR
[7] , Smooth homotopy projective spaces, Bull. Amer. Math. Soc., 75 (1969), 509-513. | Zbl | MR
[8] and , O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., 57, Springer, 1968. | Zbl | MR
[9] , Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv., 14 (1941/1942), 257-309. | Zbl | MR | JFM
[10] and , Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Ann. of Math. Studies, 88, Princeton University Press, 1977. | Zbl | MR
[11] and , Pin structures on low-dimensional manifolds, in : Geometry of Low-Dimensional Manifolds 2, (S.K. Donaldson and C.B. Thomas, eds.), London Math. Soc. Lecture Note Ser., 151, Cambridge University Press (1990), 177-242. | Zbl | MR
[12] , Differential Manifolds, Academic Press, 1993. | Zbl | MR
[13] , Involutions on Manifolds, Ergeb. Math. Grenzgeb., 59, Springer, 1971. | Zbl | MR
[14] and , Structures de contact sur certaines sphères exotiques, C.R. Acad. Sci. Paris, Sér. I, Math., 282 (1976), 591-593. | Zbl | MR
[15] , Formes de contact sur les variétés de dimension 3, in : Proc. Liverpool Singularities Sympos. II (C.T.C. Wall, ed.), Lecture Notes in Math., 209, Springer (1971), 142-163. | Zbl | MR
[16] and , Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb., 69, Springer (1972). | Zbl | MR
[17] , Contact structures on (n-1)-connected (2n+1)-manifolds, Banach Center Publ., 18 (1986), 255-270. | Zbl | MR
[18] , Surgery of non-simply-connected manifolds, Ann. of Math. (2), 84 (1966), 217-276. | Zbl | MR
[19] , Contact surgery and symplectic handlebodies, Hokkaido Math. J., 20 (1991), 241-251. | Zbl | MR
Cité par Sources :



