Nous étudions le comportement d’une théorie à orientation complexe sur un espace du type , la puissance -étendue d’un espace , à la recherche d’une description de en fonction de . Nous donnons une telle description dans le cas particulier des -théories de Morava (pour espace quelconque) et dans le cas du cobordisme complexe , de la théorie de Brown-Peterson BP ou de n’importe quelle théorie Landweber-exacte, pour décrivant une vaste classe d’espaces.
We examine the behaviour of a complex oriented cohomology theory on , the -extended power of a space , seeking a description of in terms of the cohomology . We give descriptions for the particular cases of Morava -theory for any space and for complex cobordism , the Brown-Peterson theories BP and any Landweber exact theory for a wide class of spaces.
@article{AIF_1998__48_2_517_0, author = {Hunton, John Robert}, title = {The complex oriented cohomology of extended powers}, journal = {Annales de l'Institut Fourier}, pages = {517--534}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {2}, year = {1998}, doi = {10.5802/aif.1627}, zbl = {0899.55019}, mrnumber = {99c:55017}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1627/} }
TY - JOUR AU - Hunton, John Robert TI - The complex oriented cohomology of extended powers JO - Annales de l'Institut Fourier PY - 1998 SP - 517 EP - 534 VL - 48 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1627/ DO - 10.5802/aif.1627 LA - en ID - AIF_1998__48_2_517_0 ER -
%0 Journal Article %A Hunton, John Robert %T The complex oriented cohomology of extended powers %J Annales de l'Institut Fourier %D 1998 %P 517-534 %V 48 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1627/ %R 10.5802/aif.1627 %G en %F AIF_1998__48_2_517_0
Hunton, John Robert. The complex oriented cohomology of extended powers. Annales de l'Institut Fourier, Tome 48 (1998) no. 2, pp. 517-534. doi : 10.5802/aif.1627. https://aif.centre-mersenne.org/articles/10.5802/aif.1627/
[1] Continuous Morava K-theory and the geometry of the In-adic tower, Math. Scand., 75 (1994), 67-81. | EuDML | MR | Zbl
and ,[2] Bockstein operations in Morava K-theories, Forum Math., 3 (1991), 543-560. | EuDML | MR | Zbl
and ,[3] H∞ ring spectra and their applications, Springer Lecture Notes in Math., vol. 1176 (1986). | MR | Zbl
, , and ,[4] Modern foundations for stable homotopy theory, Handbook of Algebraic Topology, editor I. M. James, (1995) Elsevier North-Holland. | MR | Zbl
, , , ,[5] On the structure of spaces representing a Landweber exact cohomology theory, Topology, 34 (1995), 29-36. | MR | Zbl
and ,[6] Bousfield Localisation functors and Hopkins' chromatic splitting conjecture, Proceedings of the Čech Centennial Homotopy conference, June 1993, American Mathematical Society Contemporary Mathematics Series, editors Mila Cenkl and Haynes Miller, 181 (1995), 225-250. | MR | Zbl
,[7] Invertible spectra in the E(n) local stable homotopy category, to appear, Journal of the London Mathematical Society. | MR | Zbl
and ,[8] Morava K-theories and localisation, preprint. | MR | Zbl
and ,[9] The Morava K-theory of wreath products, Math. Proc. Camb. Phil. Soc., 107 (1990), 309-318. | MR | Zbl
,[10] Detruncating Morava K-theory, Proc. Adams Memorial Symposium, LMS Lecture notes series, C.U.P., 176 (1992) 35-43. | MR | Zbl
,[11] An exactness theorem for the homology of representing spaces, preprint.
and ,[12] On Brown-Peterson cohomology of QX, preprint. | Zbl
,[13] Homological properties of comodules over MU*(MU) and BP*(BP), Amer. J. Math., 98 (1976), 591-610. | MR | Zbl
,[14] Autour de la platitude, Bull. Soc. Math. France, 97 (1969), 81-128. | Numdam | MR | Zbl
,[15] On the integral cohomology of wreath products, to appear, J. Algebra. | Zbl
,[16] Equivariant stable homotopy theory, Springer Lecture Notes in Math., vol. 1213 (1986). | MR | Zbl
, , and ,[17] On the K-theory of the extended power construction, Math. Proc. Camb. Phil. Soc., 92 (1982), 263-274. | MR | Zbl
and ,[18] The Steenrod algebra and its dual, Ann. Math., 67 (1958), 150-171. | MR | Zbl
,[19] Homology of the infinite symmetric group, Ann. Math., 73 (1961), 229-257. | MR | Zbl
,[20] The Hopf ring for complex cobordism, Journal of Pure and Applied Algebra, 9 (1977), 241-280. | MR | Zbl
and ,[21] The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture, Amer. J. Math., 102 (1980), 691-748. | MR | Zbl
and ,[22] Brown-Peterson cohomology from Morava K-theory, to appear, Journal of K-theory. | Zbl
, and ,[23] A stable decomposition of ΩnΣnX, J. London Math. Soc., 7 (1974), 577-583. | MR | Zbl
,[24] Ph. D. thesis, University of Rochester.
,[25] On products in a family of cohomology theories associated to the invariant prime ideals of π*(BP), Comment. Math. Helv., 52 (1977), 457-481. | MR | Zbl
,[26] On the Steenrod algebra of Morava K-theory, J. London Math. Soc., (2) 22 (1980), 423-438. | MR | Zbl
,Cité par Sources :