This article studies the asymptotic behavior of the number of the negative eigenvalues as of the two dimensional Pauli operators with electric potential decaying at and with nonconstant magnetic field , which is assumed to be bounded or to decay at . In particular, it is shown that , when decays faster than under some additional conditions.
Cet article étudie le comportement asymptotique des valeurs propres négatives , quand , des opérateurs de Pauli avec un potentiel électrique qui tend vers à l’infini et avec un champ magnétique non constant, qui est supposé borné ou tendant vers à l’infini. Il est montré, en particulier, que , quand diminue plus rapidement que sous des hypothèses supplémentaires.
@article{AIF_1998__48_2_479_0, author = {Iwatsuka, Akira and Tamura, Hideo}, title = {Asymptotic distribution of negative eigenvalues for two dimensional {Pauli} operators with nonconstant magnetic fields}, journal = {Annales de l'Institut Fourier}, pages = {479--515}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {2}, year = {1998}, doi = {10.5802/aif.1626}, zbl = {0909.35100}, mrnumber = {99e:35168}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1626/} }
TY - JOUR AU - Iwatsuka, Akira AU - Tamura, Hideo TI - Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields JO - Annales de l'Institut Fourier PY - 1998 SP - 479 EP - 515 VL - 48 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1626/ DO - 10.5802/aif.1626 LA - en ID - AIF_1998__48_2_479_0 ER -
%0 Journal Article %A Iwatsuka, Akira %A Tamura, Hideo %T Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields %J Annales de l'Institut Fourier %D 1998 %P 479-515 %V 48 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1626/ %R 10.5802/aif.1626 %G en %F AIF_1998__48_2_479_0
Iwatsuka, Akira; Tamura, Hideo. Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields. Annales de l'Institut Fourier, Volume 48 (1998) no. 2, pp. 479-515. doi : 10.5802/aif.1626. https://aif.centre-mersenne.org/articles/10.5802/aif.1626/
[1] Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field, Phys. Rev. A, 19 (1979), 2461-2462.
and ,[2] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., 45 (1978), 847-883. | MR | Zbl
, and ,[3] L'asymptotique de Weyl pour les bouteilles magnétiques, Commun. Math. Phys., 105 (1986), 327-335. | MR | Zbl
,[4] Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer Verlag, 1987. | Zbl
, , and ,[5] Magnetic Lieb-Thirring inequalities and stochastic oscillatory integrals, Operator Theory, Advances and Applications, 78 (1994), Birkhäuser Verlag, 127-134. | MR | Zbl
,[6] Magnetic Lieb-Thirring inequalities, Commun. Math. Phys., 170 (1995), 629-668. | MR | Zbl
,[7] Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. I. Non-asymptotic Lieb-Thirring type estimate, preprint, 1996.
and ,[8] Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Commun. Math. Phys., 188 (1997), 599-656. | Zbl
and ,[9] Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18, A.M.S., 1969. | MR | Zbl
and ,[10] Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields, preprint, 1997 (to be published in Duke Math. J.). | MR | Zbl
and ,[11] On the spectral theory of the Schrödinger operator with electromagnetic potential, Pseudo-differential Calculus and Mathematical Physics, Adv. Partial Differ. Eq., Academic Press, 5 (1994), 298-390. | MR | Zbl
and ,[12] Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle, J. Func. Anal., 101 (1991), 255-285. | MR | Zbl
,[13] Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field I, J. Soviet Math., 35 (1986), 2201-2211. | Zbl
,[14] On the Lieb-Thirring estimates for the Pauli operator, Duke Math. J., 82 (1996), 607-637. | MR | Zbl
,[15] Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields, Osaka J. Math., 25 (1988), 633-647. | MR | Zbl
,Cited by Sources: