Nœuds Fox-résiduellement nilpotents et rigidité virtuelle des variétés hyperboliques de dimension 3
Annales de l'Institut Fourier, Volume 48 (1998) no. 2, pp. 535-551.

We introduce a class of knots and use it to prove a topological rigidity criterion for homotopy equivalences between 3-manifolds. As an application, we give a new proof of Gabai’s virtual rigidity theorem for hyperbolic 3-manifolds.

En définissant une nouvelle classe de nœuds dans les variétés de dimension 3, on obtient une démonstration plus classique du théorème de rigidité virtuelle des variétés hyperboliques de D. Gabai.

@article{AIF_1998__48_2_535_0,
     author = {Dubois, Jo\"el},
     title = {N{\oe}uds {Fox-r\'esiduellement} nilpotents et rigidit\'e virtuelle des vari\'et\'es hyperboliques de dimension 3},
     journal = {Annales de l'Institut Fourier},
     pages = {535--551},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {2},
     year = {1998},
     doi = {10.5802/aif.1628},
     mrnumber = {1625594},
     zbl = {0899.57008},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1628/}
}
TY  - JOUR
AU  - Dubois, Joël
TI  - Nœuds Fox-résiduellement nilpotents et rigidité virtuelle des variétés hyperboliques de dimension 3
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 535
EP  - 551
VL  - 48
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1628/
DO  - 10.5802/aif.1628
LA  - fr
ID  - AIF_1998__48_2_535_0
ER  - 
%0 Journal Article
%A Dubois, Joël
%T Nœuds Fox-résiduellement nilpotents et rigidité virtuelle des variétés hyperboliques de dimension 3
%J Annales de l'Institut Fourier
%D 1998
%P 535-551
%V 48
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1628/
%R 10.5802/aif.1628
%G fr
%F AIF_1998__48_2_535_0
Dubois, Joël. Nœuds Fox-résiduellement nilpotents et rigidité virtuelle des variétés hyperboliques de dimension 3. Annales de l'Institut Fourier, Volume 48 (1998) no. 2, pp. 535-551. doi : 10.5802/aif.1628. https://aif.centre-mersenne.org/articles/10.5802/aif.1628/

[Du] J. Dubois, Nœuds géométriquement-libres et rigidité topologique des variétés de dimension 3, Thèse, Université Toulouse-III, 1996.

[Ep] D.B.A. Epstein, The degree of map, Proc. London Math. Soc., (3) 16 (1966), 369-383. | MR | Zbl

[Ga1] D. Gabai, Homotopy hyperbolic 3-manifolds are virtually hyperbolic, J. Amer. Math. Soc., 7 (1994), 193-198. | MR | Zbl

[Ga2] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom., 18 (1983), 445-503. | MR | Zbl

[GMT] D. Gabai, G.R. Meyerhoff, N. Thurston, Homotopy Hyperbolic 3-manifolds are hyperbolic, preprint. | MR | Zbl

[He] J. Hempel, 3-Manifolds, Ann. of Math. Stud., vol 86, Princeton Univ. Press, Princeton NJ, 1976. | MR | Zbl

[Hi] M.W. Hirsch, Differential topology, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | MR | Zbl

[HS] J. Hass, P. Scott, Homotopy equivalence and homeomorphism of 3-manifolds, Topology, 31 (1992), 493-517. | MR | Zbl

[Ja] W. Jaco, Lecture on 3-manifold topology, CBMS Lecture Notes, No. 43, Amer. Math. Soc., Providence, RI, 1980. | MR | Zbl

[Jo] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Note in Math. Vol. 761 (Springer, Berlin-Heidelberg-New York, 1979). | MR | Zbl

[JS] W. Jaco, P. Shalem, Seifert fibred spaces in 3-manifolds, Mem. Amer. Math. Soc., 220 (1980). | Zbl

[Kr] P.H. Kropholler, A note on centrality in 3-manifold groups, School of Math. Sci., Queen Mary College, London E1 4NS (1989), 261-266.

[Ma] W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann., 111 (1935). | JFM | Zbl

[Ma1] A. Mal'Cev, On isomorphic matrix representations of infinite groups, Math. Sb., 8 (50) (1940), 405-422. | MR | Zbl

[Sa] T. Sakai, Geodesic knots in hyperbolic 3-manifold, Kobe J. Math., 8 (1991), 81-87. | MR | Zbl

[Sc1] P. Scott, The geometry of 3-manifolds, Bull. London Math. Soc., 15 (1983), 401-487. | MR | Zbl

[Sc2] P. Scott, There are no fake Seifert fibred spaces with infinite π1, Ann. of Math., (2) 117 (1983), 35-70. | MR | Zbl

[St] J. Stallings, Homology and Central Series of Groups, J. Algebra, 2 (1965), 170-181. | MR | Zbl

[Th1] W. Thurston, Geometry and topology of 3-manifolds, Lecture Notes, Princeton University, Princeton NJ, 1978-1979.

[Th2] W. Thurston, Three dimensionnal manifolds, Kleinian groups, and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982) 357-381. | Zbl

[Wa1] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., (2) 87 (1968), 56-88. | MR | Zbl

[Wa2] F. Waldhausen, On the determination of some bounded 3-manifold by their fundamental groups alone, Proc. of Int. Sym. of Topology, Hercy-Novi, Yugoslavia, 1968 : Beograd (1969), 331-332. | Zbl

[Wr] A.H. Wright, Monotone mappings and degree one mappings between pl manifolds, Geometry Topology (Proc. Conf., Park City, Utah, 1974), Lecture Note in Math. Vol 438, Springer, Berlin (1975) 441-459. | MR | Zbl

Cited by Sources: