Soit un groupe algébrique complexe simple et simplement connexe, un tore maximal et le groupe de Weyl. On démontre que l’espace de modules grossier paramétrant les classes de -équivalence de -fibrés semi-stables sur une courbe elliptique , est isomorphe à . D’après un résultat de Looijenga, ceci prouve que est un espace projectif anistotrope.
Let be a complex algebraic group, simple and simply connected, a maximal torus and the Weyl group. One shows that the coarse moduli space parametrizing -equivalence classes of semistable -bundles over an elliptic curve is isomorphic to . By a result of Looijenga, this shows that is a weighted projective space.
@article{AIF_1998__48_2_413_0, author = {Laszlo, Yves}, title = {About $G$-bundles over elliptic curves}, journal = {Annales de l'Institut Fourier}, pages = {413--424}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {2}, year = {1998}, doi = {10.5802/aif.1623}, zbl = {0901.14019}, mrnumber = {99c:14016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1623/} }
TY - JOUR AU - Laszlo, Yves TI - About $G$-bundles over elliptic curves JO - Annales de l'Institut Fourier PY - 1998 SP - 413 EP - 424 VL - 48 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1623/ DO - 10.5802/aif.1623 LA - en ID - AIF_1998__48_2_413_0 ER -
%0 Journal Article %A Laszlo, Yves %T About $G$-bundles over elliptic curves %J Annales de l'Institut Fourier %D 1998 %P 413-424 %V 48 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1623/ %R 10.5802/aif.1623 %G en %F AIF_1998__48_2_413_0
Laszlo, Yves. About $G$-bundles over elliptic curves. Annales de l'Institut Fourier, Tome 48 (1998) no. 2, pp. 413-424. doi : 10.5802/aif.1623. https://aif.centre-mersenne.org/articles/10.5802/aif.1623/
[AB] The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond., A 308 (1982), 523-615. | MR | Zbl
, ,[Be] Conformal blocks, fusion rules and the Verlinde formula, Israel Math. Conf. Proc., 9 (1996), 75-96. | MR | Zbl
,[BS] Chevalley's theorem for complex crystallographic Coxeter groups, Funkt. Anal. i Ego Prilozheniya, 12 (1978), 79-80. | MR | Zbl
, ,[BLS] The Picard group of the moduli stack of G-bundles on a curve, preprint alg-geom/9608002, to appear in Compos. Math. | Zbl
, , ,[Bo] Groupes et algèbres de Lie, chap. 7, 8 (1990), Masson.
,[BG] Conjugacy classes in loop groups and G-bundles on elliptic curves, Int. Math. Res. Not., 15 (1966), 733-752. | MR | Zbl
,[D] Espaces projectifs anisotropes, Bull. Soc. Math. France, 103 (1975), 203-223. | Numdam | MR | Zbl
[FMW] Vector bundles and F Theory, eprint hep-th 9701162. | Zbl
, ,[Hu] Linear algebraic groups, GTM 21, Berlin, Heidelberg, New-York, Springer (1975). | MR | Zbl
,[LS] Picard group of the moduli stack of G-bundles, Ann. Scient. Éc. Norm. Sup., 4e série, 30 (1997), 499-525. | Numdam
,[LeP] Fibrés vectoriels sur les courbes algébriques, Publ. Math. Univ. Paris 7, 35 (1995). | MR | Zbl
,[Lo] Root systems and elliptic curves, Invent. Math., 38 (1976), 17-32. | MR | Zbl
,[Ra1] Moduli for principal bundles over algebraic curves, I and II, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 301-328 and 421-449. | MR | Zbl
,[Ra2] Stable principal bundles on a compact Rieman surface, Math. Ann., 213 (1975), 129-152. | MR | Zbl
,[S] Cohomologie galoisienne, LNM 5 (1964). | Zbl
,[T] Semistable bundles over an elliptic curve, Adv. Math., 98 (1993), 1-26. | MR | Zbl
,Cité par Sources :