It is proved that if is a weakly 1-complete Kähler manifold with only one end, then or there exists a proper holomorphic mapping of onto a Riemann surface.
On démontre que si est une variété kählérienne faiblement 1-complète avec un seul bout, alors ou bien il existe une application holomorphe propre de sur une surface de Riemann.
@article{AIF_1997__47_5_1345_0,
     author = {Napier, Terence and Ramachandran, Mohan},
     title = {The {Bochner-Hartogs} dichotomy for weakly 1-complete {K\"ahler} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1345--1365},
     year = {1997},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {47},
     number = {5},
     doi = {10.5802/aif.1602},
     zbl = {0904.32008},
     mrnumber = {99e:32012},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1602/}
}
                      
                      
                    TY - JOUR AU - Napier, Terence AU - Ramachandran, Mohan TI - The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds JO - Annales de l'Institut Fourier PY - 1997 SP - 1345 EP - 1365 VL - 47 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1602/ DO - 10.5802/aif.1602 LA - en ID - AIF_1997__47_5_1345_0 ER -
%0 Journal Article %A Napier, Terence %A Ramachandran, Mohan %T The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds %J Annales de l'Institut Fourier %D 1997 %P 1345-1365 %V 47 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1602/ %R 10.5802/aif.1602 %G en %F AIF_1997__47_5_1345_0
Napier, Terence; Ramachandran, Mohan. The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds. Annales de l'Institut Fourier, Tome 47 (1997) no. 5, pp. 1345-1365. doi: 10.5802/aif.1602
[AV] and , Carlemann estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. Inst. Hautes Études Sci., 25 (1965), 81-130. | Zbl | Numdam
[ABR] , , and , On the fundamental group of a compact Kähler manifold, Duke Math. J., 64 (1992), 477-488. | Zbl | MR
[B] , Analytic and meromorphic continuation by means of Green's formula, Ann. of Math., 44 (1943), 652-673. | Zbl | MR
[C] , Complete locally pluripolar sets, J. reine angew. Math., 412 (1990), 108-112. | Zbl | MR
[Co] , Sur les fonctions triplement périodiques de deux variables, Acta Math., 33 (1910), 105-232. | JFM
[D1] , Estimations L2 pour l'operateur ∂ d'un fibrée vectoriel holomorphe semi- positif au-dessus d'une variété Kählerienne complète, Ann. Scient. Éc. Norm. Sup., 15 (1982), 457-511. | Zbl | MR | Numdam
[D2] , Cohomology of q-convex spaces in top degrees, Math. Z., 204 (1990), 283-295. | Zbl | MR
[G] , A special Stokes theorem for Riemannian manifolds, Ann. of Math., 60 (1954), 140-145. | Zbl | MR
[GR] and , Kählersche Mannigfältigkeiten mit hyper-q-konvexen Rand, Problems in analysis (A Symposium in Honor of S. Bochner, Princeton 1969), Princeton University Press, Princeton (1970), 61-79. | Zbl
[GW] and , Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, 25-1 (1975), 215-235. | Zbl | MR | Numdam
[Gr] , Kähler hyperbolicity and L2-Hodge theory, J. Diff. Geom., 33 (1991), 263-292. | Zbl | MR
[Gu] , Introduction to holomorphic functions of several variables, Vol. II, Wadsworth, Belmont, 1990.
[H] , Zur Theorie der analytischen Functionen mehrener unabhangiger Veränderlichen insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann., 62 (1906) 1-88. | JFM
[HL] and , Boundaries of complex analytic varieties I, Math. Ann., 102 (1975), 223-290. | Zbl | MR
[HM] and , Plurisubharmonic functions and a generalized Dirichlet problem, Michigan Math. J., 25 (1978), 299-316. | Zbl | MR
[K] , On a conjecture of Hunt and Murray concerning q-plurisubharmonic functions, Proc. Amer. Math. Soc., 73 (1979), 30-34. | Zbl | MR
[Ka] , Über offene analytische Äquivalenzrelationen auf komplexen Räumen, Math. Ann., 183 (1969), 6-16. | Zbl | MR
[N] , Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S., Kyoto, 10 (1974), 101-110. | Zbl | MR
[NR] and , Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. and Func. Analysis, 5 (1995), 809-851. | Zbl | MR
[Na] , The Levi problem for complex spaces II, Math. Ann., 146 (1962), 195-216. | Zbl | MR
[Ni] , L'existence d'une fonction analytique sur une variété analytique complexe à dimension quelconque, Publ. Res. Inst. Math. Sci., 19 (1983), 263-273. | Zbl | MR
[O1] , Weakly 1-complete manifold and Levi problem, Publ. R.I.M.S., Kyoto, 17 (1981), 153-164. | Zbl | MR
[O2] , Completeness of noncompact analytic spaces, Publ. R.I.M.S., Kyoto, 20 (1984), 683-692. | Zbl | MR
[P] , Algebraische Varietäten und q-vollständige komplexe Räume, Math. Z., 200 (1989), 547-581. | Zbl | MR
[R] , A Bochner-Hartogs type theorem for coverings of compact Kähler manifolds, Comm. Anal. Geom., 4 (1996), 333-337. | Zbl | MR
[Ri] , Stetige streng pseudokonvexe Funktionen, Math. Ann., 175 (1968), 257-286. | Zbl | MR
[S] , Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Diff. Geom., 17 (1982), 55-138. | Zbl | MR
[St] , Maximale holomorphe und meromorphe Abbildungen, I, Amer. J. Math., 85 (1963), 298-315. | Zbl | MR
[W] , On certain Kähler manifolds which are q-complete, Complex Analysis of Several Variables, Proceedings of Symposia in Pure Mathematics, 41, Amer. Math. Soc., Providence (1984), 253-276. | Zbl | MR
Cité par Sources :



