On démontre que si est une variété kählérienne faiblement 1-complète avec un seul bout, alors ou bien il existe une application holomorphe propre de sur une surface de Riemann.
It is proved that if is a weakly 1-complete Kähler manifold with only one end, then or there exists a proper holomorphic mapping of onto a Riemann surface.
@article{AIF_1997__47_5_1345_0, author = {Napier, Terence and Ramachandran, Mohan}, title = {The {Bochner-Hartogs} dichotomy for weakly 1-complete {K\"ahler} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1345--1365}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {5}, year = {1997}, doi = {10.5802/aif.1602}, zbl = {0904.32008}, mrnumber = {99e:32012}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1602/} }
TY - JOUR AU - Napier, Terence AU - Ramachandran, Mohan TI - The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds JO - Annales de l'Institut Fourier PY - 1997 SP - 1345 EP - 1365 VL - 47 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1602/ DO - 10.5802/aif.1602 LA - en ID - AIF_1997__47_5_1345_0 ER -
%0 Journal Article %A Napier, Terence %A Ramachandran, Mohan %T The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds %J Annales de l'Institut Fourier %D 1997 %P 1345-1365 %V 47 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1602/ %R 10.5802/aif.1602 %G en %F AIF_1997__47_5_1345_0
Napier, Terence; Ramachandran, Mohan. The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds. Annales de l'Institut Fourier, Tome 47 (1997) no. 5, pp. 1345-1365. doi : 10.5802/aif.1602. https://aif.centre-mersenne.org/articles/10.5802/aif.1602/
[AV] Carlemann estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. Inst. Hautes Études Sci., 25 (1965), 81-130. | Numdam | Zbl
and ,[ABR] On the fundamental group of a compact Kähler manifold, Duke Math. J., 64 (1992), 477-488. | MR | Zbl
, , and ,[B] Analytic and meromorphic continuation by means of Green's formula, Ann. of Math., 44 (1943), 652-673. | MR | Zbl
,[C] Complete locally pluripolar sets, J. reine angew. Math., 412 (1990), 108-112. | MR | Zbl
,[Co] Sur les fonctions triplement périodiques de deux variables, Acta Math., 33 (1910), 105-232. | JFM
,[D1] Estimations L2 pour l'operateur ∂ d'un fibrée vectoriel holomorphe semi- positif au-dessus d'une variété Kählerienne complète, Ann. Scient. Éc. Norm. Sup., 15 (1982), 457-511. | Numdam | MR | Zbl
,[D2] Cohomology of q-convex spaces in top degrees, Math. Z., 204 (1990), 283-295. | MR | Zbl
,[G] A special Stokes theorem for Riemannian manifolds, Ann. of Math., 60 (1954), 140-145. | MR | Zbl
,[GR] Kählersche Mannigfältigkeiten mit hyper-q-konvexen Rand, Problems in analysis (A Symposium in Honor of S. Bochner, Princeton 1969), Princeton University Press, Princeton (1970), 61-79. | Zbl
and ,[GW] Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, 25-1 (1975), 215-235. | Numdam | MR | Zbl
and ,[Gr] Kähler hyperbolicity and L2-Hodge theory, J. Diff. Geom., 33 (1991), 263-292. | MR | Zbl
,[Gu] Introduction to holomorphic functions of several variables, Vol. II, Wadsworth, Belmont, 1990.
,[H] Zur Theorie der analytischen Functionen mehrener unabhangiger Veränderlichen insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann., 62 (1906) 1-88. | JFM
,[HL] Boundaries of complex analytic varieties I, Math. Ann., 102 (1975), 223-290. | MR | Zbl
and ,[HM] Plurisubharmonic functions and a generalized Dirichlet problem, Michigan Math. J., 25 (1978), 299-316. | MR | Zbl
and ,[K] On a conjecture of Hunt and Murray concerning q-plurisubharmonic functions, Proc. Amer. Math. Soc., 73 (1979), 30-34. | MR | Zbl
,[Ka] Über offene analytische Äquivalenzrelationen auf komplexen Räumen, Math. Ann., 183 (1969), 6-16. | MR | Zbl
,[N] Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S., Kyoto, 10 (1974), 101-110. | MR | Zbl
,[NR] Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. and Func. Analysis, 5 (1995), 809-851. | MR | Zbl
and ,[Na] The Levi problem for complex spaces II, Math. Ann., 146 (1962), 195-216. | MR | Zbl
,[Ni] L'existence d'une fonction analytique sur une variété analytique complexe à dimension quelconque, Publ. Res. Inst. Math. Sci., 19 (1983), 263-273. | MR | Zbl
,[O1] Weakly 1-complete manifold and Levi problem, Publ. R.I.M.S., Kyoto, 17 (1981), 153-164. | MR | Zbl
,[O2] Completeness of noncompact analytic spaces, Publ. R.I.M.S., Kyoto, 20 (1984), 683-692. | MR | Zbl
,[P] Algebraische Varietäten und q-vollständige komplexe Räume, Math. Z., 200 (1989), 547-581. | MR | Zbl
,[R] A Bochner-Hartogs type theorem for coverings of compact Kähler manifolds, Comm. Anal. Geom., 4 (1996), 333-337. | MR | Zbl
,[Ri] Stetige streng pseudokonvexe Funktionen, Math. Ann., 175 (1968), 257-286. | MR | Zbl
,[S] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Diff. Geom., 17 (1982), 55-138. | MR | Zbl
,[St] Maximale holomorphe und meromorphe Abbildungen, I, Amer. J. Math., 85 (1963), 298-315. | MR | Zbl
,[W] On certain Kähler manifolds which are q-complete, Complex Analysis of Several Variables, Proceedings of Symposia in Pure Mathematics, 41, Amer. Math. Soc., Providence (1984), 253-276. | MR | Zbl
,Cité par Sources :