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THE BOCHNER-HARTOGS DICHOTOMY FOR
WEAKLY 1-COMPLETE KAHLER MANIFOLDS

by T. NAPIER (*) & M. RAMACHANDRAN (**)

Introduction.

A complex manifold M for which H^(M,0) = 0 is said to have
the Bochner-Hartogs property (see Hartogs [H], Bochner [B], and Har-
vey and Lawson [HL]). Equivalently, for every C00 compactly supported
form a of type (0,1) with 9a == 0 on M, there is a C°° compactly supported
function /? on M such that 9(3 = a. Andreotti and Vesentini [AV] proved
that a strongly (n—Incomplete complex manifold of dimension n > 1 has
the Bochner-Hartogs property, and Grauert and Riemenschneider [GR],
that a strongly hyper-(n-l)-convex Kahler manifold of dimension n > 1
has the Bochner-Hartogs property (see Section 1). In [R], the second author
proved that if the universal covering M of a compact Kahler manifold (or
a Galois covering M with infinite covering group of more than quadratic
growth) admits a nonconstant holomorphic function, then M satisfies the
following dichotomy:

(BHD) Either M has the Bochner-Hartogs property or there exists a
proper holomorphic mapping of M onto a Riemann surface.

A complex manifold which admits a continuous plurisubharmonic exhaus-
tion function is said to be weakly 1-complete. The main result of this paper
(Theorem 2.5) is the following:

(*) Research partially supported by a Reidler Foundation grant and by NSF grant
DMS9411154.
(**) Research partially supported by NSF grant DMS9305745.
Key words: Riemann surface - g-complete - Pluriharmonic.
Math. classification: 32C.
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THEOREM. — If (M^g) is a connected noncompact weakly 1-
complete Kahler manifold which has exactly one end, then M satis-
fies (BHD).

If a complex manifold M has the Bochner-Hartogs property, then
every holomorphic function / on a neighborhood of infinity with no rela-
tively compact connected components extends to a holomorphic function
/o on M as follows. Cutting off away from infinity, one obtains a C°° func-
tion A on M. For a = <9A, there is a function /? as above and the function
/o == A — f3 is the desired extension. In particular, a Riemann surface can-
not have the Bochner-Hartogs property and a complex manifold cannot
satisfy both of the conditions in (BHD). Moreover, a manifold with the
Bochner-Hartogs property has only one end because, on a manifold with
more than one end, there exists a function which is locally constant, but
not constant, near infinity. A related result due to Arapura, Bressler, and
the second author [ABR] is that the universal covering of a compact Kahler
manifold has at most one end. In fact, as shown in [NR], a complete non-
compact connected Kahler manifold M which satisfies ^(M^K) = 0 and
which has bounded geometry or is weakly 1-complete has exactly one end.
It was also proved in [NR] that a complete Kahler manifold with at least
three ends which has bounded geometry or is weakly 1-complete admits a
proper holomorphic mapping onto a Riemann surface.

Facts concerning strictly ^-plurisubharmonic functions and Green's
functions are collected in Section 1. Section 2 contains the proof of the
theorem. The main step is to prove Proposition 2.3 that (BHD) holds
for a weakly 1-complete Kahler manifold on which there exists, outside a
compact subset, a pair of pluriharmonic functions with linearly independent
differentials (this may be thought of as a generalization of a theorem of
Ohsawa [01]). One may assume that M is complete and admits a positive
Green's function since one can exhaust M by domains with these properties.
Hence, if [a] € H^{M,0) is a nonzero element, then one can form the
L2 harmonic projection 7 and a function (3 such that 7 = 0 — 9f3. In
particular, (3 is pluriharmonic outside a compact set K. One then forms
a pluriharmonic function on a covering space, pushes down to obtain a
second pluriharmonic function on M \ JC, and applies Proposition 2.3.

The authors would like to thank the referee for helpful comments and
suggestions.
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1. Preliminaries on ^-plurisubharmonic functions.

Most of the facts discussed in this section are known, so the proofs are
only sketched. Throughout this section, (M, g) denotes a Kahler manifold
of dimension n and q denotes a positive integer.

Let (p be a real-valued continuous function on M. We will say that (/?
is strictly q-plurisubharmonic if (p is an element of the class ^f(q) defined
by Wu [W]. We will call (p q-plurisubharmonic if the function (p + '0 is
strictly 9-plurisubharmonic for every continuous strictly g-plurisubharmo-
nic function '0 on M.

Remarks.

1. If (p of class G2, then y? is g-plurisubharmonic (strictly g-plurisub-
harmonic) if and only if, for each point XQ e M, the trace of the restriction
of the Levi form

w^^w,
%,j J

of y to any complex subspace of T^°M of dimension q is nonnegative
(respectively, positive).

2. If (p is 9-plurisubharmonic (strictly ^-plurisubharmonic), then (p is
(^+l)-plurisubharmonic (respectively, strictly (g+l)-plurisubharmonic).

3. A real-valued function of class C2 on a complex manifold is said to
be strictly q-convex if its Levi form has at most q—1 nonpositive eigenvalues
at each point. A function -0 on a complex space X is said to be strictly
q-convex if, for each point x € X, there is a proper embedding of a
neighborhood U of x into an open subset V of some complex Euclidean
space and an extension of ^ \u to a strictly ^-convex function on V'. It
follows that if (p is of class C2 and strictly ^-plurisubharmonic on M, then
(/? is strictly ^-convex on M and on any analytic subset of M.

4. The set of smooth elements of ^(g) is dense in the following sense:

PROPOSITION 1.1 (Wu [W], Proposition 1). — If(p is a continuous
strictly q-plurisubharmonic function on a Kahler manifold M and a is
a positive continuous function on M, then there exists a C°° strictly q-
plurisubharmonic function ̂  such that \(p — i/}\ < a on M.
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In particular, it follows that the restriction of a continuous q-
plurisubharmonic (strictly ^-plurisubharmonic) function to a complex sub-
manifold of dimension q is subharmonic (respectively, strictly subhar-
monic).

5. The Kahler manifold (M,^) is said to be hyper-q- complete if M
admits a C°° strictly g-plurisubharmonic exhaustion function. If there
exists a C00 g-plurisubharmonic exhaustion function which is strictly q-
plurisubharmonic on the complement of some compact subset of M, then
(M, g) is said to be strongly hyper-q-convex.

6. Standard arguments show that if ^p and ^ p ' are continuous q-
plurisubharmonic functions on M, then y? + (^/, max(y?,(^'), and the com-
position ;^(<^) of any nondecreasing convex function \ with y?, are all q-
plurisubharrnonic.

7. Hunt and Murray [HM] and Kalka [K] studied functions which
satisfy a condition which they called g-plurisubharmonicity but which is
weaker than the above notion.

The following result is contained implicitly in the work of Greene and
Wu [GW], Ohsawa [02], and Demailly [D2]:

THEOREM 1.2 (Demailly, Greene-Wu, Ohsawa). — Let X be an
analytic subset of dimension m <: q in the Kahler manifold M and let Y
be the union of the singular set Xsmg with all irreducible components
ofX which are noncompact or which have dimension strictly less than q.
Then there exist neighborhoods V of X and W of Y in M and a C°°
strictly (q-^-1)-plurisubharmonic function (p on V such that ^p\x exhausts
X, W C V, and ^\w is strictly q-plurisubharmonic.

The proof is an easy modification of Demailly's [D2] proof of the
analogous result for strictly g-convex functions, but we include a sketch
here for completeness. Similarly, as in [D2] and in the work of Col^oiu [C],
a hyper-^-complete submanifold admits a hyper-g-complete neighborhood,
but we won't use this fact and the proof will not be sketched.

By a theorem of Richberg [Ri], a C°° strictly plurisubharmonic
function on an analytic subset of a complex space extends to a C°°
strictly plurisubharmonic function on a neighborhood. Demailly proved
a version of this theorem for strictly ^-convex functions in which the
function is approximated by a strictly g-convex function on a neighborhood
(see also [P]). A natural modification of Richberg's proof shows that if a
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function on an analytic subset of a Kahler manifold admits local C°° strictly
g-plurisubharmonic extensions, then it admits a C°° strictly ^-plurisub-
harmonic extension to a neighborhood. We will only need this fact for
submanifolds and the proof is simple in this case.

PROPOSITION 1.3 (Richberg). — If^p is a C°° strictly q-plurisub-
harmonic function on a complex submanifold N ofM (relative to the Kahler
metric Q \ N ) ) then there exists a C°° strictly q-plurisubharmonic function ̂
on a neighborhood ofN in M such that ^\N= ^P-

Sketch of the proof. — Let m = dim N and suppose (£/, (z\,..., Zn))
is a holomorphic coordinate neighborhood in which N is the zero set of
w = (^ i , . . . , Zn-rn)' If {?' is a function on a relatively compact polydisk D
in U obtained by composing ip with the associated projection mapping and
C > 0 is sufficiently large, then the function ^)'-\-C\w\2 is strictly ^-plurisub-
harmonic on a neighborhood of N D D. By using a partition of unity, one
may patch these local extensions to obtain the desired function '0. Q. E. D.

The main point of Demailly's [D2] proof of Ohsawa's theorem [02]
is essentially the following version of the theorem of Greene and Wu [GW]
on the existence of subharmonic exhaustion functions (see [D2], Proof of
Theorem 2):

PROPOSITION 1.4 (Demailly, Greene-Wu). — Suppose X is a com-
plex space with no compact irreducible components, Y is an analytic subset
which contains the singular set Xging, U is a neighborhood ofY in X, and
h is a Hermitian metric on X \Y. Then there exists a C°° nonnegative
function ip on X such that

(i) y? is positive and exhaustive on X \U,

(ii) ^p vanishes on a neighborhood ofY, and

(iii) (p is subharmonic (with respect to h) on X \Y and strictly
subharmonic on the subset {x € X \ (p{x) > 0} of X\Y.

Proof of Theorem 1.2 ([D2]). — The statement of the theorem makes
sense and is trivial for q •= 0. We proceed by induction on q. Assume that
q > 0 and that the theorem holds for nonnegative integers less than q.
Let A be the union of Xsmg and all of the irreducible components of X
of dimension less than ^, let B be the union of all of the noncompact
irreducible components of X of dimension q, and let C be the closure
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ofX\(AuB).

Applying the induction hypothesis to A and cutting off away from A,
we obtain a C°° nonnegative function a on M and a neighborhood U of A
in M such that a is strictly g-plurisubharmonic on U and exhaustive on U.

Next, by Proposition 1.4, there exists a nonnegative C°° function '0
on X such that supp-0 C B \ A = B \ (A U C), ^ > 2 on B \U,
^ exhausts B \ U, and '0 is strictly ^-plurisubharmonic on the subset
N = ̂ ((O, oo)) of B \ (A U C). By Richberg's theorem (Proposition 1.3),
there exists a C°° strictly g-plurisubharmonic function T on a neighborhood
YI of N in M such that r = -0 on TV. Let \: R —^ R be a C°° nondecreasing
convex function such that \(t) = 0 if t < 1, \(t) > t if t > 2, and ^'(^) > 0
if t > 1. Since ^^([D, 1)) is a neighborhood of the boundary of N in X,
we may assume (shrinking V\ if necessary) that there is a neighborhood V^
of X \ N in M such that r < 1 on Vi D l^. Thus the function ^(r) may
be extended to a nonnegative C°° g-plurisubharmonic function f3 which is
denned on the neighborhood V\ U V^ of X and vanishes on a neighborhood
of A U C. Moreover, since ^ > 2 on B \ £7, /3 is strictly g-plurisubharmonic
and positive on a neighborhood of B \ U in M and f3 exhausts B \ U.

Since dimC < g+1, every C°° function on the subset C \ Y of
C \ Xsmg is strictly (g+l)-plurisubharmonic. As in the construction of /3,
we may form a nonnegative C°° (g+l)-plurisubharmonic function 7 on a
neighborhood of X such that 7 is positive and strictly (g+l)-plurisubhar-
monic on a neighborhood of C \ U in M, 7 exhausts C \ U, and 7 vanishes
on a neighborhood of A U B = Y.

It is now easy to check that if A is a C°° increasing convex function
on M and A'(^) —> oo sufficiently fast as t —^ oo, then the function
(p =. a + A(/3) + A (7) has the required properties on some neighborhood V
of X and some neighborhood IV of Y = A U B. Q. E. D.

A C°° strictly g-convex function y? on a complex space X of pure
dimension q has no local maximum points. Wu's approximation theorem
(Proposition 1.1) implies that the same is true of the restriction of a con-
tinuous strictly g-plurisubharmonic function on M to an analytic subset X
of pure dimension q. Similarly, we have the following:

PROPOSITION 1.5 (Maximum principle). — Ifthe restriction (p\x of
a continuous q-plurisubharmonic function (p on M to a connected analytic
subset X of pure dimension q assumes its maximum value m = (p{xo} at
some point XQ C X, then ̂ \x is constant.
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Proof. — Since ^ \Xreg is subharmonic, it suffices to show that
y(x) = m at some point x e Xreg- Assume that this is not the case.
Taking successive singular sets Xsing, (^sing)sing, . . . , we may assume that,
for some nowhere dense analytic subset V of X, we have XQ e Vreg and
(p < m on X \ Y. Every C°° function on Vreg is strictly g-plurisubhar-
monic since dimY < q. So, by applying Proposition 1.3, we may form
a relatively compact neighborhood U of XQ in M and a C°° strictly q-
plurisubharmonic function ^ on a neighborhood of U such that ^(^o) = 0
and ^ < 0 on {U \ {xo}) D V. In particular, on some neighborhood V
of Y H 9U, we have -0 < 0 and hence ^ + e^ < m for every e > 0. We
also have 9? + 6-0 < m on (X H 9U) \ V provided e is sufficiently small.
Therefore (p + e'0 < m = (^ + e^)(;ro) on X n 9(7. This contradicts the
maximum principle for continuous strictly g-plurisubharmonic functions,
so the proposition follows. Q. E. D.

In this paper, the main tool for obtaining the Bochner-Hartogs
property is the following result of Grauert and Riemenschneider [GR] (who
proved a version of the vanishing theorem for higher cohomology groups)
and of Siu [S], Lemma 5.10 (who proved a version in the more general
setting of harmonic maps into manifolds satisfying a certain curvature
condition).

THEOREM 1.6 (Grauert-Riemenschneider, Siu). — Suppose f2 is a
relatively compact domain in a Kahler manifold M and Q has a C°° (n-1)-
plurisubharmonic defining function (p whose differential is nonzero at every
point in 9fl.

(a) If f3 is a C°° function on fl, which is harmonic on Q and which
satisfies the tangential Cauchy-Riemann equations 9b/3 = 0 on 9^1, then /3
is pluriharmonic on fl.

(b) If^p is strictly (n—l)-plurisubharmonic on a neighborhood of some
point in 9fl, then ̂ (^ °) = 0-

Sketch of the proof. — Suppose first that (3 is a function as in (a).
Let 7 = 0 / 3 and let T] = ^Fy, where * denotes the Hodge star operator.
Then rj may be thought of as a C°° form of type (n,n-l) or as a
form of type (0,n-l) with values in the canonical bundle KM on H. A
computation in normal coordinates then shows that rj lies in the domain
of the adjoint operator <9*. The Bochner-Kodaira formula is then (see [GR]
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or [S], formula 2.1.4)

11^111^) + ll̂ llî ) = W\i^ + / H2 .rda,
./0^

where da is the volume element on 90, and r is the trace of the restriction
of the Levi form C((p) of (p to T110^^). Here, the curvature terms drop
out because 77 is of type (n, n-1) and we have used the fact that 9(3 A 9(p
vanishes at each point of 90. Since (3 is harmonic, the left-hand side is
equal to zero. Since (p is (7i—l)-plurisubharmonic, we have r > 0 and
hence Vrj = 0. A computation in normal coordinates now shows that (3
is pluriharmonic (see [S], Proof of Lemma 5.6(d)) and (a) is proved.

Suppose now that a is a C°° compactly supported form of type (0,1)
with 9a = 0. Let (3 be the C°° function on 0 which vanishes on 90 and
which satisfies -,A/3 = 9*9/3 = 9*a on 0 (where A = -(d*d+dd*) is the
Laplacian), let 7 = a — 9(3, and let r] = *7. Then

9*77 = - * 9 * (*7) = *97 = 0 and 9rj = - ̂  \fFa - 9*9/3] = 0.

Moreover, since a has compact support, 7 = —9/3 near 90', and, since /3
vanishes on 90, 9&/3 = 0. Applying the Bochner-Kodaira formula to rj as
in the proof of (a), we get VT; = 0 and it follows that 97 = 0 (and hence
d7 == 0). Thus 7 is a holomorphic 1-form on 0.

On the other hand, since r > 0 at some point, the Bochner-Kodaira
formula implies that |7| = |9/3| = 0 on some nonempty open subset in 90. If
U is a connected neighborhood of a boundary point and / is a C°° function
on U D 0 which is holomorphic on U D 0 and which vanishes on U H 90,
then one may extend / to a continuous function h on U which vanishes
outside 0. But then 9h == 0 in the weak sense, so h is holomorphic. It follows
that h, and therefore /, must vanish identically. Letting / be a coefficient
of the holomorphic 1-form 7 with respect to some local holomorphic frame,
we see that 7 vanishes on a nonempty open subset of 0 and hence on all
of 0. Thus /3 is holomorphic outside the support K of a. Since /3 vanishes
on 90, the above discussion (with f = f3) implies that /3 vanishes on each
connected component of 0\K which is not relatively compact in 0. In other
words, /3 has compact support and a = 9/3. Thus (b) is proved. Q. E. D.

Since the proof of the main theorem involves related arguments on a
complete Kahler manifold, we close this section with a discussion of Green's
functions on Riemannian manifolds. A connected noncompact Riemannian
manifold N which admits a positive symmetric Green's function G(x, y) is
said to be hyperbolic (otherwise, N is called parabolic). We normalize G so
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that, for each point XQ G TV,

AdistrG('^o) = -^o

where 6x0 is the Dirac function at XQ and A = —(d*d+dd*) is the Laplacian.
We will use the same notation for the corresponding integral operator G
given by

{Ga){x)= ( G(x^y)a{y)dV(y) ^x € N
J N

for each suitable function a on N . If a is a C°° compactly supported
function, then /3 = —Ga is a C°° bounded function with finite energy (i.e.
SN l^l2 ̂  < °°) an(^ ̂  = a' Moreover, f3(xv) —^ 0 if {xy} is a sequence
in N with Xy —> oo and G { ' ^ X y ) —f 0. Such a sequence {xy} always exists
and will be called a regular sequence.

2. Proof of the main result.

We begin with two lemmas. The first is a special case of a result of
Nishino [Ni] who proved it without the assumption that M is Kahler. In
the Kahler case, one may prove it using arguments contained in the proof
of [NR], Theorem 4.6.

LEMMA 2.1. — Suppose (M,^) is a connected weakly 1-complete
Kahler manifold and there exists a proper holomorphic mapping of some
nonempty open subset ofM onto a Riemann surface. Then M also admits
a proper holomorphic mapping onto a Riemann surface.

The second lemma often helps one obtain a holomorphic mapping to
a Riemann surface. An elementary proof is given here. One may also prove
this fact by using holomorphic equivalence relations (see, for example, [Ka]).

LEMMA 2.2. — If uj\ and c<;2 are two linearly independent closed
holomorphic 1-forms satisfying uj\ A uj^ = 0 on a connected complex
manifold M, then the meromorphic function h = uj\/uj'2 has no points
of indeterminacy in M and is locally constant on the analytic set S =
[x^M | (0:1)^ = 0} U [x^M | (^)x = 0}.

Proof. — Let I be the set of points of indeterminacy of h and, for
each C ^ P 1 , let ________

^C = (^(MV))-1^) ̂
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be the fiber over ^ (see [Gu]). Since the problem is local, we may assume
that there exist holomorphic functions /i and /2 on M such that dfi = uji
for i = 1,2. One may see that /i and /2 are locally constant on F^ for
each ^ e P1 as follows. Near each smooth point x of F^ at which df^ ^ 0,
we may choose holomorphic coordinates z = (^ i , . . . , Zn) in which ^i = /2
on a connected neighborhood of x. Since d/i A dz\ = 0, we have then
fi = /i^i) and hence h = /{(^i). In particular, h is constant along each
fiber of z\ and hence each of these fibers (being of codimension 1) must
be an open set in F(^. Therefore, if v is a vector tangent to F(^ at rr, then
0:2 (v) = df^(v) = 0. This is also the case if df^ = 0 at x. Thus /2 is
locally constant on F^ for each C G P1, and, by symmetry, the same is true
of /i. It follows that, if XQ e J, then f^^^o)) contains the connected
component H^ of F(^ containing XQ for each ^ G P1. But {^}^^pi is an
infinite collection of distinct analytic sets of pure dimension n—1, so this is
impossible. Therefore I = 0.

It remains to show that h is locally constant on the analytic set 5,
which we may assume to be irreducible. Since /i or /2 is then constant on 5,
we may assume that S lies in some irreducible component T of the zero
set of /i • /2 and it suffices to show that h is constant on T. By working
near a generic point of T, we may assume that there exist holomorphic
coordinates z = (^ i , . . . , Zn) on M in which T is the zero set of z\ and, for
j = 1,2, fj(z) = z^3 Qj(z) where gj is a nonvanishing holomorphic function
and rrij > 0. By replacing z\ by z\u for some (local) m^1 root u of ^j, we
may also assume that g^ = 1. Since d/i A df^ = 0, we then get /i = fi{zi)
and ^i = ^i(^i). Hence the function h(z) = f[(zi)/f^i) depends only
on z\ and is therefore constant on T. Thus the lemma is proved.

The main step in the proof of the theorem stated in the introduction is
the following proposition, which is, in a sense, a generalization of a theorem
of Ohsawa [01] and a result in [NR].

PROPOSITION 2.3. — Let {M,g) be a connected noncompact
Kahler manifold of dimension n on which there exists a continuous (n—1)-
plurisubharmonic exhaustion function ̂ . Suppose there is a compact sub-
set K of M such that, on each connected component E of M \ K, there
exists a pair of real-valued pluriharmonic functions p\ and p2 with linearly
independent differentials dp\ and dp^. Then M satisfies (BHD).

Remarks.

1. The above condition on E holds if, for example, there exists a
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nonconstant holomorphic function on E.

2. If M satisfies the above conditions and has more than one end, then
there exists a proper holomorphic mapping of M onto a Riemann surface.

Proof. — Choosing a G R sufficiently large, we may assume without
loss of generality that

K = [x e M I (p(x) < a} -^ 0.

Let E be a connected component of M \ K with noncompact closure and
let p\ and p^ be pluriharmonic functions on E as in the statement of
the proposition. We may assume that pi and p^ extend to pluriharmonic
functions on a neighborhood of E.

There are three possibilities:

(a) The analytic subset X = {x e E \ (<9pi A 9p^)x = 0} of E is
nowhere dense,

(b) X = E and the set Q of points in E which lie in a compact level
of the holomorphic mapping

h=9^:E^?l

9?2

(see Lemma 2.2) is nonempty, or

(c) X = E and Q = 0.

We will show that, if (a) or (c) holds, then M admits an exhaustion
by C°° domains which are strongly hyper-(n-l)-convex at each boundary
point in E\ and if (b) holds, then E admits a proper holomorphic mapping
onto a Riemann surface. Briefly, in the case (a), we will work on a relatively
compact (weakly) hyper- (n-l)-convex domain f^ in M. Combining y?, p{ +
p|, and a strictly (n-l)-plurisubharmonic function near X (obtained from
Theorem 1.2), we will obtain a strictly (n-l)-plurisubharmonic function
near E D 9^1. In the case (&), we will show that Q = E and hence, by Stein
factorization, one obtains the desired mapping. Finally, in the case (c), we
will again work on a hyper-(n-l)-convex domain f2 and we will apply a
standard patching argument to strictly (n-l)-plurisubharmonic functions
on neighborhoods of fibers of h (or of a suitable holomorphic function if h
is constant) to obtain a strictly (n—l)-plurisubharmonic function as in the
case (a).

Suppose first that E satisfies the condition (a) and let Y be the union
of all of the compact irreducible components of X of dimension n—1. The
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maximum principle (Proposition 1.5) implies that ^p(Y) is a countable set,
so we may choose b G (a, oo) \ ip(Y) so large that K is contained in some
connected component ^ of {x € M \ (p(x) < b}. By Theorem 1.2 (Demailly,
Greene-Wu, Ohsawa), there exists a positive C°° function '0 on E \ Y
which is strictly (n-l)-plurisubharmonic on a neighborhood ofX\yin£ ' .
Therefore, since p^ + pj is strictly (n-l)-plurisubharmonic on E \ X and
since ^-l(&) H Y = 0, the function 7 = r • (p^ + p|) 4- '0, where r is a
sufficiently large positive constant, is strictly (n-l)-plurisubharmonic on a
relatively compact neighborhood U of ^~l(b) D E in E \ Y. Applying Wu's
approximation theorem [W] (Proposition 1.1) to the function 7—log(6—y?)
on f2 D U, we get a C°° strictly (n-l)-plurisubharmonic function A on
Ur\Q which approaches infinity at 9f^. Finally, let c > 0 and let \: R —> R
be a C°° nondecreasing convex function such that \(t) = 0 for t < c,
X'(t) > 0 for t > c, and -^(t) —> oo as t —> oo. If c is sufficiently large,
then the function ^(A) extends to a C°° nonnegative (n-l)-plurisubhar-
monic function on ^ U (M \ E) which vanishes on M \ E, which is strictly
(n-l)-plurisubharmonic near E D <9f2, and which exhausts f2 H E.

Assuming now that (b) holds, we show that Q = E. We first observe
that Q is open for point-set topological reasons. For if XQ C Q and LQ is
the (compact) level of h through a-o, then there is a relatively compact
neighborhood U of LQ in E\ (h~l(h(xo)) \Lo). Since 9U is compact, there
is a neighborhood V of h(xo) in P1 such that h^^V) D 9U = 0. Hence the
level through each point in the neighborhood h~^(y) D U does not meet
9U and must, therefore, be a compact subset of U.

Next, let b > a be so large that there is a connected component f^ of
the set {x € M \ y(x) < b} such that Q D ̂  -^ 0, K C f^, and f^ D ̂  is
connected. If a;o ^ 0 H ̂ ; then the irreducible component A of /^(/i^o))
containing a;o ls a compact subset of 0 D £J. For if {^} is a sequence in
Qr\^l\{xo} converging to XQ and, for each ^, L^ is the (compact) level of h
through Xy, then, by the Remmert-Stein-Thullen theorem (see [Gu]), A lies
in the closure of |j L^. On the other hand, ^)\L^ is constant for each v and

v
^(^v) ~9' ^(^o) where a < (p(xo) < b. Therefore, since y = a or b at each
boundary point of fl, H £', |j Ly must lie in some compact subset of Q. D E

v
and the claim follows.

Since h extends to a holomorphic mapping on a neighborhood of E
(pi and /?2 extend by the choice of a), the set of critical values of ^f(^n^)
is finite and the inverse image of this finite set is an analytic subset B of
Q, D E. The above discussion implies that, if LQ is the level of h through
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a point XQ C Q H f2 and Z/o H Q is smooth, then LQ C Q D f2. Therefore
Q H ^ \ Z? is a closed subset of the connected set fl, r\ E \ B and hence,
since Q is open, we must have equality. In particular, Q D f2 is dense in
fl.r\ E. Applying the above again, we see that if LQ is any level of h which
meets f2, then every irreducible component of LQ that meets Q must be a
compact subset of f2 D E. It follows that Lo is compact. Thus ^2 D E C Q
and, since the choice of b was arbitrary, we get Q = E. Therefore every
level of h is compact and, by Stein factorization [St], we obtain a proper
holomorphic mapping of E onto a Riemann surface.

Finally, assuming that X = E and Q = 0 (i.e. that E satisfies
the condition (c)), we apply a modification of a construction due to
Ohsawa [01] for the case of a weakly 1-complete surface. We also assume
for now that the mapping h: E —^ P1 is nonconstant.

We first show that the union C of the collection C of all compact
irreducible components of fibers of h is a nowhere dense analytic subset
of E. For if KQ is a compact subset of E and LQ is a level of h, then any
compact irreducible component Co of LQ which meets KQ must lie in the
compact subset (fi~l((p(Ko)). Moreover, since Co 7^ LQ^ Co must meet some
irreducible component HQ of the analytic set H = {x € E | {h^}x = 0}
and, since h is locally constant on H^ we have HQ C LQ. Only finitely
many irreducible components of H meet (^-1((^(Ao)), so the collection of
all levels LQ with such an irreducible component Co is finite. It follows
that C is locally finite in E and hence that C is an analytic set.

The set ^(C) is discrete, so we may choose a number b € (a, oo)\(^((7)
so large that there is a connected component ^ of {x € M \ (p(x) < b}
such that K C ^2 and fl, D E is connected. We may also choose a
relatively compact neighborhood W of y?"1^) H E in E \ C. For each
point x e ^-l(&) H £1, the analytic set h^^h^x)) \ C has no compact
irreducible components and hence, by Theorem 1.2, there is a C°° strictly
(n-l)-plurisubharmonic function 71 on a neighborhood V\ of h~^{h(x))\C
in E. Moreover, we have h^^D^) D W C V\ for any sufficiently small
neighborhood D[ of h(x) in P1. There is also a nonnegative C°° function Ai
with suppAi C D[ and Ai =. 1 on some neighborhood D\ of h{x).
We may, therefore, choose C°° strictly (n-l)-plurisubharmonic functions
7i 5 • • • 5 7m on open sets V\,..., Vm in E, respectively; open sets D\,..., Dm
and D^ ..., D^ in P1; and nonnegative C°° functions A i , . . . , \m on P1

such that, for each j = 1,... ,m, we have Xj = 1 on Pj, suppA^- C Dp
h^^nW C Vj, and (^(^n^ C /i-^Pi) U .. .U/i-^D^). Moreover,
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by Lemma 2.2, h is locally constant on the analytic set S = {x e E \
{9p2)x = 0}, so h(S H ^-l(&)) is a finite set and we may assume that, for
each j, \j{h) is constant near each point of W D S.

We now show that, for a sufficiently large positive constant s, the C°°
function

m

7EE5•(p2)2+]^A,(fa)7,
j=i

is strictly (n-l)-plurisubharmonic on some neighborhood of (p~l{b)^\E. It
is easy to see that 7 is strictly (n—l)-plurisubharmonic on a neighborhood
oi S^[ip~l(b)^\E, since, near each point of this set, each of the nonnegative
functions Ai ( / i ) , . . . , \m(h) is constant and at least one of the functions is
positive. Given a point x near ̂ ^(b^^E and a tangent vector v e T^'°M,
we have

m

/;(7)(^^)=25|^p2(^)|2+^7,(^(A,)(^,^)
j=i

m m

+^2Re[9A,(^)^(^]+^A,(^))/;(7,)(^,^).
.7=1 J=l

If x is not near 5', then, since {Op2)x 7^ 0 and <9pi A <9p2 = 0, we may
choose holomorphic coordinates (^i , . . . ,Zn) near x in which p2 = 2Re^i,
Pi = Pi(^i), and

^ ^ c ^ ^ ^
9/92 9^1 QZ\ \ l J

r^j

Thus 9/i = Q—^i and hence |<9p2^)|2 = |^i(v)|2 ^ go|^(v)|2 for some

positive constant qo. Since A i , . . . , \m > 0, since max(Ai(^) , . . . , \m(h)) >
0 near ^-l(&) H £', and since, for each j, 7^ is strictly (n-l)-plurisubhar-
monic on the neighborhood Vj of suppA^-(^) H ^'~ l(&), there exist positive
constants q\ and q^ (independent of s) such that, for every e > 0, for every
point x e y^"1^) H £1, and for every collection of orthonormal tangent
vectors e i , . . . , e^-i G r^'°M, we have

n-l n-l

E ̂ M^^ ̂ ) ^ (^o - gi • (1 + (2e)-1)) . ̂  |^(e,)|2 - ,6gi + 92.
Z=l 2=1 "

Thus if we choose 6 < Iq^/qi and 5 > (2go)-lgl •(l+(2e)~1), then 7 will be
strictly (n-l)-plurisubharmonic near points in (^(^nE which lie outside
an (arbitrarily small) neighborhood of 5 as well as those which lie near S.
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Proceeding now as in the case (a), one gets a C°° nonnegative (n-1)-
plurisubharmonic function on f2 U (M \ E) which vanishes on M \ E, which
exhausts £'Df2, and which is strictly (n-l)-plurisubharmonic near Er\9fl..

If h is constant, then <9(cipi + c^p^) = 0 for some pair of constants
ci,C2 G C which are not both zero. The function / = cipi + 02 p2 on £J
is holomorphic and nonconstant; because the functions 1, pi, and p^ are
linearly independent. One may now proceed as above by using / in place
of the mapping h.

Thus for each of the (finitely many) connected components E of M\K
which have noncompact closure, either E admits a proper holomorphic
mapping onto a Riemann surface (and hence a C°° plurisubharmonic
exhaustion function), or there exists an arbitrarily large relatively compact
domain Q in M and a C°° nonnegative (n—1)-plurisubharmonic function
on 0 U (M \ E) which vanishes on M \ E, which exhausts E D 0, and which
is strictly (n-l)-plurisubharmonic near E D 9fl.. If all of these connected
components of M \ K have the former property, then M admits a C°°
plurisubharmonic exhaustion function and a complete Kahler metric and
Lemma 2.1 implies that there is a proper holomorphic mapping of M
onto a Riemann surface. If at least one of these connected components
has the latter property, then H^{M,0) = 0. For if a is a C°° compactly
supported form of type (0,1) and Qa = 0, then we may choose a C°°
relatively compact domain 0 which contains the support of a and which
admits a C°° (n—1)-plurisubharmonic defining function which is strictly
(n-l)-plurisubharmonic near at least one connected component of 90. The
theorem of Grauert and Riemenschneider [GR] and Siu [S] (Theorem 1.6)
then implies that ^(0, 0) = 0 and hence that there is a C°° compactly
supported function (3 on 0, and therefore on M, such that 9(3 = a. Thus
M has the property (BHD). Q. E. D.

To apply Proposition 2.3, it will be convenient to have the following
lemma, which is essentially a special case of [NR], Theorem 2.6.

LEMMA 2.4. — Let {M,g) be a connected noncompact complete
hyperbolic Kahler manifold, let MQ be a C°° relatively compact domain
in M, and let E be a connected component of M \ MQ with noncompact
closure. Then there exists a pluriharmonic function r on M such that
0 < T < 1, T has finite energy, and, for every regular sequence {xy}
in M approaching oo (see Section 1), r(xv) —> 1 if Xy € E for y ^> 0
and r{xy) —^ 0 ifXy G M \ E for v > 0.
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The construction of r is contained within the proof of [NR], Theo-
rem 2.6. That r < 1 is not proved explicitly, but one can easily verify this
property by forming an exhaustion of M by C°° relatively compact domains
and writing the Green's function on M as the limit of the corresponding
sequence of Green's functions.

We are now ready to prove the main result.

THEOREM 2.5. — Let (M,g) be a connected Kahler manifold of
dimension n which has exactly one end and which admits a continuous
(n—1)-plurisubharmonic exhaustion function y?. Assume that at least one
of the following conditions is satisfied:

(i) ^p plurisubharmonic,

(ii) (M, g) is complete and hyperbolic, or

(m) (p is of class C°°.

Then M satisfies (BHD).

Remark. — An example of Cousin [Co] shows that one cannot
remove the requirement that M have only one end (see, for example, [NR],
Example 3.9).

Proof. — Assuming that there exists a C°° compactly supported
form a of type (0,1) such that 9a = 0 and [a] ^ 0 in H^{M, 0), we will
show that there is a proper holomorphic mapping of M onto a Riemann
surface.

We first assume that (i) or (ii) holds. Fix a C°° relatively compact
domain MQ in M such that suppa C MQ and M \ MQ is connected.
If (p is plurisubharmonic (i.e. (i) holds), let a > sup^ ip and let ^
be the connected component of {x C M \ ̂ p(x) < a} containing MQ.
Then, by a theorem of Nakano [N] and Demailly [Dl], the (weakly 1-
complete) domain f^ admits a complete Kahler metric g ' . Moreover, (^,p')
is hyperbolic (in fact, the Green's function vanishes at the boundary) and
if a is sufficiently large, then f2 \ MQ is connected. It suffices to show
that fl, admits a proper holomorphic mapping onto a Riemann surface
(for a suitable choice of a). For we may then form an exhaustion of M
by such domains. Applying a theorem of Narasimhan [Na], Corollary 1 to
the Cartan-Remmert reductions, we get the required mapping on M. If (p
is not plurisubharmonic, we set (f^(/) = {M^g).
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Thus, in either case, (^,</) admits a continuous (n-l)-plurisub-
harmonic exhaustion function and a positive symmetric Green's function
G(x,y), and the Kahler metric g ' is complete. Therefore, since <9*a is a
C°° function with compact support on f^, the function (3 ^ -2G(<9*a) is

a C°° bounded function with finite energy and —-A/3 = 0*9(3 = 9*a.
Moreover, {3{xy} —> 0 for any regular sequence {x^} in f2 approaching oo
(see Section 1). The form 7 = a - 9f3 is a harmonic form in L^ i(^,^');
the harmonic projection of a. By the Gaffney theorem [G], 7 is closed (and
coclosed). In particular, 7 is a holomorphic 1-form on f^ (since 9^ = 0)
and f3 is pluriharmonic on the connected set E =. fl, \ MQ. Since [a] ̂  0 in
H^(M, 0) and suppa C Mo CC ^, we have [a] ^ 0 in H^, 0).

It follows that f3 is not constant on E. For, if f3 were constant on E^
then, since f3 vanishes at infinity along any regular sequence, we would have
f3 = 0 on f^ \ Mo. Hence 7 would vanish on E and, therefore, on f2, since 7
is harmonic. But we would then get a = 9f3, where f3 is a C°° function with
compact support in f^; which contradicts the nonvanishing of [a\. Thus (3\E
is not constant (and hence is nowhere locally constant).

If 7 = 0, then /3 \E is a nonconstant holomorphic function on the
end E. Proposition 2.3 then implies that Q satisfies (BHD) and hence,
since H\ (f^, 0) 7^ O, there is a proper holomorphic mapping onto a Riemann
surface. Thus we may assume that 7 is not everywhere zero. Let p = Re f3\E
and p ' = lmf3\E- If the functions 1, p, and p ' are linearly independent on £',
then, again, Proposition 2.3 gives one the required mapping. If 1, p, and p1

are linearly dependent on E, then, since p and p1 vanish at infinity along
any regular sequence, the functions p and p ' must be linearly dependent.
Therefore, after multiplying a by a suitable nonzero complex constant, we
may assume that f3\E= P (i.e. f3\E is real-valued) and hence that 7^= —9p.
To obtain a second pluriharmonic function (i.e. to apply Proposition 2.3)
we will use Lemma 2.4 to obtain a pluriharmonic function on a covering
space of Q with two ends and then push down to E.

We first observe that, for any point XQ G E, the mapping 7Ti(£1, xo) —^
7Ti(f2,a;o) is not surjective. For if the mapping is surjective, then, since
the C°° closed real 1-form 6 = —7 — 7 on Q is equal to dp on E, it follows
that the function po given by

[ x

po{x) = p{xo) + 9 V . re f2
JXQ

is a well-defined C°° function with dpQ = 6 = dp on E and po(«^o) = p(xo).
Hence po = P on £1, so f3 — po is a C°° function on 0 which vanishes on
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E = fl. \ MQ and which satisfies
<9(/3 - po) = 9(3 - 9po = a - 7 + 7 = a.

But this contradicts the assumption that [a] ^ 0 in 1^(^,0), so the
mapping cannot be surjective.

Fix a point XQ e E, let F be the image of 7Ti(£, 2:0) m 7Ti(^ ^0)5 and
let TT : n —)• ^2 be a connected covering space with 7r^(7ri(^,.ri)) = F for
some point x\ € Tr'^.ro). Since F is a proper subgroup and E is a C°°
domain, TT maps a neighborhood of the closure £1 of the connected compo-
nent £1 of £ = Tr"1^) containing a;i isomorphically onto a neighborhood
of E and f^\£i is not relatively compact in ̂  (i.e. ^2 has at least two ends).
In particular, E\ is a hyperbolic end of f^ with respect to the complete
Kahler metric 7r*(/. Therefore, by Lemma 2.4, there exists a pluriharmonic
function r on f2 such that 0 < r < 1, r has finite energy, and, for every
regular sequence {xy} in 0 approaching oo,

. _ f l i f ^ e £ i f o r z / > 0
^Im^T^}-^ i f ^ e ^ \ £ i f o r ^ > 0 .

Since TT maps £1 isomorphically onto £, the restriction r [̂  determines
a pluriharmonic function on E. If the differential of this function and
the differential of the pluriharmonic function p are linearly independent
on E, then, by Proposition 2.3, f2 satisfies (BHD). Therefore, since p is
nonconstant, it now suffices to assume that there exist real constants r and s
such that p o TT == rr + s on E\ and to obtain a contradiction.

The first observation is that if -7 = 7r*7, then 7 is a closed form of
type (0,1) on ^ which is equal to the form —9{rr + s) on the nonempty
open set E\ and hence on the entire set f2. Therefore, on the nonempty
open set E \ E\, we have

—9{p o 7r) == 7 = —9{rr + 5).

Hence the restriction of the function (p o 7r) — (rr + s) to E \ E\ is real-
valued and holomorphic and is therefore locally constant. Thus if E^ is a
connected component of E which is not equal to £'1, then, for some real
constant s', we have p o TT = rr + s ' on £'2. Now since 7r(£'i) = Tr(E^) = E,
we may choose a regular sequence {Xy} in E and sequences {^} and {zy}
in £'1 and E^ respectively, such that Tr(^) = Tr(^) = o*^ for each v. The
sequences {^} and {zy} are then regular sequences in f^, because the lifting
of the function v = —G(xo^') to ^ is a negative subharmonic function and
v(y^),v(z^) —> 0. Therefore r{yy) —^ 1 and r { z ^ ) —> 0. Since p vanishes at
infinity along any regular sequence, we get

0 == limp(.Ti,) = lim(rr(^) + s) = r + s



THE BOCHNER-HARTOGS DICHOTOMY 1363

and
0 = limp(a^) = \\m(rr{z^) + s ' ) = s7.

Therefore, for each point x (E E and each pair of points y € £'1 riTr""1^) and
z € J^nTr"1^), we have r{y) —1= r~lp{x) = r{z). Since 0 < r < 1 on f^,
this is not possible. Thus the proof is complete for the cases (i) and (ii).

Finally, suppose (p is of class C°° (i.e. the condition (iii) holds). As in
the case (i), we fix Mo, a, and f2. Here, we choose a to be a regular value of (p
and we let g ' be the restriction of g to f2. It suffices to show that there exists
an arbitrarily large choice of a for which f^ admits a proper holomorphic
mapping ^ onto a Riemann surface. For if ^ is such a mapping, then (p is
constant on each level of ^. Hence, near a generic point of ^2, there exist
holomorphic coordinates (^ i , . . . , Zn) in which ip is a function of z\ and we
get

W = -^l—dz.dz, = (2^1i)-lA(^l^l > 0.oz\oz\
Thus it will follow that (p is plurisubharmonic on each of the domains f2.
Letting a —>• oo, it will then follow immediately that (p is plurisubharmonic
on M as in the case (i) and the proof in the case (iii) will be complete.

As in the proof of Theorem 1.6 (Grauert-Riemenschneider and Siu),
since the boundary of Q. is regular, we have 7 = a — 9 {3 on Q where 7 is
harmonic and f3 vanishes on 9f2. The metric g ' is not complete, but the proof
of Theorem 1.6 shows that 7 is closed. In particular, {3 is pluriharmonic on
the connected set E == f2 \ Mo. Moreover, since [a] ^ 0, (3 is nonconstant
onE.

If 9^1 is not connected, then we may form a C°° function r on f2
which is harmonic on Q and locally constant, but not constant, on 9f2. By
Theorem 1.6 (a), r is then pluriharmonic on ̂  and, since f3 vanishes on 9f2,
dr and df3 are linearly independent on E. Therefore, by Proposition 2.3, f2
admits a proper holomorphic mapping onto a Riemann surface. Thus we
may assume that 90. is connected.

If a' is a regular value in the interval (sup^ ^, a) which is sufficiently
close to a and ^/ is the connected component of {x C M \ (p(x) < a'}
containing Mo, then f^ CC 0 and the set E ' == Q' \ Mo is connected. As
above, we may write 7' = a — 9f3' on f^' where 7' harmonic and ft' vanishes
on Q^l'. If df3 and d{3' are linearly independent on -E", then Proposition 2.3
implies that 0' satisfies (BHD). If df3 and df31 are linearly dependent, then {3
is constant on 9^1'. Since /3 is nowhere locally constant in ^ \ f^ and /3 = 0
on <9^2, the maximum principle implies then that f3 is equal to a nonzero
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constant on Q^t'. Hence the restriction of the real part or the imaginary part
of /3to^\f^ isa positive or negative pluriharmonic function which vanishes
at points in 9f2. It follows that ^ admits a plurisubharmonic exhaustion
function and hence, a proper holomorphic mapping onto a Riemann surface.
Therefore, by the above remarks, M satisfies (BHD). Q. E. D.
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