Estimates of the number of rational mappings from a fixed variety to varieties of general type
Annales de l'Institut Fourier, Volume 47 (1997) no. 3, pp. 801-824.

First we find effective bounds for the number of dominant rational maps f:XY between two fixed smooth projective varieties with ample canonical bundles. The bounds are of the type {A·K X n } {B·K X n } 2 , where n= dim X, K X is the canonical bundle of X and A,B are some constants, depending only on n.

Then we show that for any variety X there exist numbers c(X) and C(X) with the following properties:

For any threefold Y of general type the number of dominant rational maps f:XY is bounded above by c(X).

The number of threefolds Y, modulo birational equivalence, for which there exist dominant rational maps f:XY, is bounded above by C(X).

If, moreover, X is a threefold of general type, we prove that c(X) and C(X) only depend on the index r X c of the canonical model X c of X and on K X c 3 .

Nous démontrons d’abord que le nombre d’applications rationnelles dominantes f:XY, entre deux variétés projectives fixes avec fibré canonique ample, peut être majoré par {A·K X n } {B·K X n } 2 . Ici n= dim X, K X est le fibré canonique de X et A,B sont quelques constantes, dépendant seulement de n.

Ensuite nous démontrons que, pour toute variété X, il y a des constantes c(X) et C(X) avec les propriétés suivantes  :

Pour toute variété Y de dimension 3 et de type général le nombre d’applications rationnelles dominantes f:XY est majoré par c(X).

Le nombre de variétés Y de dimension 3 et de type général, modulo équivalence birationnelle, pour lesquelles il existe des applications rationnelles dominantes f:XY, est majoré par C(X).

Si, de plus, X est aussi une variété de dimension 3 et de type général, nous démontrons que c(X) et C(X) dépendent seulement de l’index r X c du modèle canonique X c de X et de K X c 3 .

@article{AIF_1997__47_3_801_0,
     author = {Bandman, Tanya and Dethloff, Gerd},
     title = {Estimates of the number of rational mappings from a fixed variety to varieties of general type},
     journal = {Annales de l'Institut Fourier},
     pages = {801--824},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {47},
     number = {3},
     year = {1997},
     doi = {10.5802/aif.1581},
     zbl = {0868.14008},
     mrnumber = {98h:14016},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1581/}
}
TY  - JOUR
AU  - Bandman, Tanya
AU  - Dethloff, Gerd
TI  - Estimates of the number of rational mappings from a fixed variety to varieties of general type
JO  - Annales de l'Institut Fourier
PY  - 1997
SP  - 801
EP  - 824
VL  - 47
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1581/
DO  - 10.5802/aif.1581
LA  - en
ID  - AIF_1997__47_3_801_0
ER  - 
%0 Journal Article
%A Bandman, Tanya
%A Dethloff, Gerd
%T Estimates of the number of rational mappings from a fixed variety to varieties of general type
%J Annales de l'Institut Fourier
%D 1997
%P 801-824
%V 47
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1581/
%R 10.5802/aif.1581
%G en
%F AIF_1997__47_3_801_0
Bandman, Tanya; Dethloff, Gerd. Estimates of the number of rational mappings from a fixed variety to varieties of general type. Annales de l'Institut Fourier, Volume 47 (1997) no. 3, pp. 801-824. doi : 10.5802/aif.1581. https://aif.centre-mersenne.org/articles/10.5802/aif.1581/

[Ban1] T. Bandman, Surjective holomorphic mappings of projective manifolds, Siberian Math. Journ., 22 (1982), 204-210. | MR | Zbl

[Ban2] T. Bandman, Topological invariants of a variety and the number of its holomorphic mappings, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, RIMS, Kyoto University, 1992, 188-202.

[BanMar] T. Bandman, D. Markushevich, On the number of rational maps between varieties of general type, J. Math. Sci. Univ. Tokyo, 1 (1994), 423-433. | MR | Zbl

[BPV] W. Barth, C. Peters, A. Van De Ven, Compact complex surfaces, Springer Verlag, 1984. | MR | Zbl

[Ben] X. Benveniste, Sur l'anneau canonique de certaine variété de dimension 3, Invent. Math., 73 (1983), 157-164. | MR | Zbl

[BinFle] J. Bingener, H. Flenner, On the fibers of analytic mappings, V. Ancona, A. Silva (Eds.): Complex Analysis and Geometry, Plenum Press, 1993, 45-101. | MR | Zbl

[CatSch] F. Catanese, M. Schneider, Bounds for stable bundles and degrees of Weierstrass schemes, Math. Ann., 293 (1992), 579-594. | MR | Zbl

[DelKat] P. Deligne, N. Katz, Groupes de Monodromie en Géometrie Algébrique, (SGA 7 II), Exp. XVII, LNM 340 (1973), Springer Verlag. | MR | Zbl

[Dem] J.-P. Demailly, A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. | MR | Zbl

[DesMen1] M.M. Deschamps and R.L. Menegaux, Applications rationelles séparables dominantes sur une variété de type général, Bull. Soc. Math. France, 106 (1978), 279-287. | EuDML | Numdam | Zbl

[DesMen2] M.M. Deschamps and R.L. Menegaux, Surfaces de type géneral dominées par une variété fixe, C.R. Acad. Sc. Paris, Ser.A, 288 (1979), 765-767. | MR | Zbl

[DesMen3] M.M. Deschamps and R.L. Menegaux, Surfaces de type géneral dominées par une variété fixe II, C.R. Acad. Sc. Paris, Ser.A, 291 (1980), 587-590. | Zbl

[Det] G. Dethloff, Iitaka-Severi's Conjecture for complex threefolds, Preprint Mathematica Gottingensis, 29-1995, Duke eprint 9505016.

[Elk] R. Elkik, Rationalité des singularités canoniques, Invent. Math., 64 (1981), 1-6. | EuDML | MR | Zbl

[Flen] H. Flenner, Rational singularities, Arch. Math., 36 (1981), 35-44. | Zbl

[Flet] A.R. Fletcher, Contributions to Riemann-Roch on projective threefolds with only canonical singularities and applications, S.J. Bloch (Ed.): Algebraic Geometry, Bowdoin 1985, 221-231. Proc Symp. in Pure Math., vol. 46, 1987. | Zbl

[Fra] M. De Franchis, Un Teorema sulle involuzioni irrazionali., Rend. Circ. Mat. Palermo, 36 (1913), 368. | JFM

[Fuj] T. Fujita, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Japan, 38 (1986), 20-37. | MR | Zbl

[FulLaz] W. Fulton, R. Lazarsfeld, Positive polynomials for ample vector bundles, Ann. Math., 118 (1983), 35-60. | MR | Zbl

[Gra] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. IHES, 5 (1960), 1-64. | EuDML | Numdam | Zbl

[GriHar] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, 1978. | MR | Zbl

[Gro] A. Grothendieck, EGA III, Publ. IHES, 17 (1963), 1-91. | Numdam

[Han] M. Hanamura, Stability of the pluricanonical maps of threefolds, T. Oda (Ed.): Algebraic Geometry, Sendai 1985, 185-202. Advanced Studies in Pure Math., vol. 10, 1987. | Zbl

[Har] R. Hartshorne, Algebraic Geometry, Springer Verlag, 1977. | MR | Zbl

[Hir] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, Ann. Math., 79 (1964), 109-326. | MR | Zbl

[HowSom1] A. Howard, A.J. Sommese, On the orders of the automorphism groupes of certain projective manifolds, J. Hano et al. (Eds.): Manifolds and Lie Groupes. Progress in Math., 14 Birkhäuser 1981, 145-158. | MR | Zbl

[HowSom2] A. Howard and A. Sommese, On the theorem of de Franchis, Annali Scuola Norm. Sup. Pisa, 10 (1983), 429-436. | EuDML | Numdam | MR | Zbl

[Iit] S. Iitaka, Algebraic Geometry, Springer Verlag, 1982. | MR | Zbl

[Kan] E. Kani, Bounds on the number of non-rational subfields of a function field, Inv. Math., 85 (1986), 199-215. | EuDML | MR | Zbl

[Kaw] Y. Kawamata, On the finiteness of generators of pluricanonical ring for a threefold of general type, Amer. J. Math., 106 (1984), 1503-1512. | MR | Zbl

[Kob] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. | MR | Zbl

[KobOch] S. Kobayashi, T. Ochiai, Meromorphic mappings into complex spaces of general type, Inv. Math., 31 (1975), 7-16. | EuDML | MR | Zbl

[Kol1] J. Kollár, Towards moduli of singular varieties, Compos. Math., 56 (1985), 369-398. | EuDML | Numdam | MR | Zbl

[Kol2] J. Kollár, Higher direct images of dualizing sheaves I, Annals of Math., 123, 11-42. | MR | Zbl

[KolMor] J. Kollár and S. Mori, Classification of three-dimensional flips, J. of the AMS, 5 (1992), 533-703. | MR | Zbl

[Luo1] T. Luo, Global 2-forms on regular threefolds of general type, Duke Math. J., 71 (1993), 859-869. | MR | Zbl

[Luo2] T. Luo, Plurigenera of regular threefolds, Math. Z., 217 (1994), 37-46. | EuDML | MR | Zbl

[Mae1] K. Maehara, Families of varieties dominated by a variety, Proc. Japan Acad., Ser. A, 55 (1979), 146-151. | MR | Zbl

[Mae2] K. Maehara, A finiteness property of variety of general type, Math. Ann., 262 (1983), 101-123. | EuDML | MR | Zbl

[Mae3] K. Maehara, Diophantine problem of algebraic varieties and Hodge theory, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, 167-187. RIMS, Kyoto University, 1992.

[MatMum] T. Matsusaka, D. Mumford, Two fundamental theorems on deformations of polarized varieties, Amer. J. Math., 86 (1964), 668-684. | MR | Zbl

[Mil] J. Milnor, On the Betti numbers of real projective varieties, Proc. AMS, 15 (1964), 275-280. | MR | Zbl

[Mor] S. Mori, Flip theorem and the existence of minimal models for threefolds, J. AMS, 1 (1988), 117-253. | MR | Zbl

[Nog] J. Noguchi, Meromorphic mappings into compact hyperbolic complex spaces and geometric diophantine problems, Inte. J. Math., 3 (1992), 277-289, 677. | MR | Zbl

[Rei1] M. Reid, Canonical threefolds, A. Beauville (Ed.): Algebraic Geometry, Angers 1979, 273-310, Sijthoff and Noordhoff, 1980. | Zbl

[Rei2] M. Reid, Young person's guide to canonical singularities, S.J. Bloch (Ed.): Algebraic Geometry, Bowdoin 1985, 345-414. Proc Symp. in Pure Math., 46, 1987. | Zbl

[Sam] P. Samuel, Complements a un article de Hans Grauert sur la conjecture de Mordell, Publ. Math. IHES, 29 (1966), 311-318. | EuDML | Numdam | MR | Zbl

[Suz] M. Suzuki, Moduli spaces of holomorphic mappings into hyperbolically embedded complex spaces and hyperbolic fibre spaces, J. Noguchi (Ed.): Proceedings of the International Symposium Holomorphic Mappings, Diophantine Geometry and Related Topics, 157-166 RIMS, Kyoto University 1992.

[Sza] E. Szabo, Bounding the automorphisms groups, Math. Ann., 304 (1996), 801-811. | EuDML | MR | Zbl

[Tsa1] I.H. Tsai, Dominating the varieties of general type, to appear: J. reine angew. Math. (1996), 29 pages. | EuDML | Zbl

[Tsa2] I.H. Tsai, Dominant maps and dominated surfaces of general type, Preprint (1996), 44 pages.

[Tsa3] I.H. Tsai, Chow varieties and finiteness theorems for dominant maps, Preprint (1996), 33 pages. | Zbl

[Uen] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, LNM 439 (1975), Springer Verlag. | MR | Zbl

[ZaiLin] M.G. Zaidenberg and V.Ya. Lin, Finiteness theorems for holomorphic maps, Several Complex Variables III, Encyclopaedia Math. Sciences, vol., 9, Springer Verlag, 1989, 113-172. | Zbl

Cited by Sources: