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ESTIMATES OF THE NUMBER OF RATIONAL
MAPPINGS FROM A FIXED VARIETY

TO VARIETIES OF GENERAL TYPE

by T. BANDMAN and G. DETHLOFF

0. Introduction.

Let X and Y be algebraic varieties, i.e. complete integral schemes
over a field of characteristic zero. Denote by R{X^ Y) the set of dominant
rational maps f : X —>Y. Then the classical theorems of de Franchis [Fra]
and Severi (cf. [Sam]) can be stated as follows:

THEOREM 0.1.

a) (de Franchis): For any Riemann surface X and any hyperbolic
Riemann surface Y the set R(X, Y) is finite. Furthermore, there exists
an upper bound for #J?(X, Y) only in terms of X.

b) (Severi): For a fixed algebraic variety X there exist only finitely
many hyperbolic Riemann surfaces Y such that R(X^ Y) is nonempty.

S. Kobayashi and T. Ochiai [KobOch] prove the following general-
ization of the de Franchis Theorem: If X is a Moishezon space and Y a
compact complex space of general type, then the set of surjective mero-
morphic maps from X to Y is finite. Other generalizations can be found
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in [DesMenI], [Nog], [Suz], and in the survey [Zai Lin]. Generalizations of
the second part of de Franchis' Theorem were given in [Bani], [Ban2] and
[BanMar]. In the latter paper it is proved that for complex projective vari-
eties X and Y with only canonical singularities and nef and big canonical
classes Kx and Ky respectively the number #R(X^Y) can be bounded
in terms of the selfintersection Kj^ of the canonical class of X and of the
indices of X and Y. This bound is not effective. Effective bounds are known
only if the varieties Y are curves or surfaces ([Kan], [HowSom2], [Tsa3]).

Section 1 of this paper contains an effective estimate of the number
of mappings in R(X^ V), provided that both varieties X and Y are smooth
projective with ample canonical bundles Kx^Ky respectively. This bound
has the form {A • K^}^3'^^ , where n = dim^X, Kx is the canonical
bundle of X and A, B are some constants, depending only on n.

This bound seems to be very big. But it is known that the bound
cannot be polynomial in K^ ([Kan]). Moreover, even for the case of curves
of genus 5 the best bound in [Kan] is of order exp(30).

The idea to obtain this bound was used in ([HowSomI]) for proving
finiteness of the automorphism group of a projective variety with ample
canonical bundle. It could not be made effective at that time, as no
effective variants of the Big Matsusaka theorem were available. Moreover,
exponential bounds for the number of automorphisms are not interesting,
as they should be linear in K^ ([Sza]).

In Sections 2, 3 and 4 we generalize Seven's result (Theorem O.l(b))
to higher dimensions.

Denote by ^F(X) the set of pairs (V, /), where Y is of general type
and / € R(X,Y). Let ^mW c F{X) the subset of those pairs (V,/)
for which the m-th pluricanonical mapping of a desingularization of Y is
birational onto its image. Consider the equivalence relations on T and F^'
(f : X -^ Y) ~ (/i : X -. Vi) iff b o f = /i, where b eBir(y,yi). The
elements of y[X)/ ~ we call targets.

The following conjecture is stated by Maehara ([Mae3]) as litaka's
Conjecture based on Seven's Theorem:

CONJECTURE 0.2. — The set T{X}j ~ of targets is a finite set.

Maehara proved in Proposition 6.5 in [Mae2] that in characteristic zero
^^(X)/ ~ is finite for all m. In particular the Conjecture is valid for
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surfaces Y (take m = 5). Special cases and related aspects are discussed in
[Tsal] - [Tsa3], [DesMen2], [DesMen3], [Mael] and [HowSom2].

In Section 3 we prove Conjecture 0.2 for the case that the targets are
complex threefolds (Theorem 3.1).

For the proof we use the following theorem of Luo [Luol], [Del]:

THEOREM 0.3. — Consider the set of smooth threefolds Y of general
type, and denote by ^(Y, Oy) the holomorphic Euler characteristic. Then
for any fixed \ = ^(Y,0y), there is a universal integer m' such that
/i°(y,(9y(m'jfy)) ^ 2. Furthermore, there is a universal integer m such
that the m-th pluricanonical map ^rnK : Y —^ ^mK(Y) maps birationally
onto its image.

In Section 4 the domain is a threefold of general type. In this case
we show (Theorem 4.1) that there is a bound for the number of targets
#(^(X)/ ~), which depends only on the selfintersection K^ and the
index rx^ of the canonical model Xc of X.

The proof is based on the fact, due to Kollar [Koll], that canonical
threefolds with fixed Hilbert polynomial form a bounded family. Using
semicontinuity theorems for the dimensions of cohomology groups we get
estimates of the holomorphic Euler characteristics of the targets. Then
we show that the graphs of maps under consideration, which map from
canonical threefolds X with fixed index rx and fixed J^, form a finite
number of algebraic families. The number of targets is bounded by the
number of irreducible components of the members of these families.

In Section 5 we return to generalizations of de Franchis' result
(Theorem 0.1 (a)). Consider a threefold X of general type. We prove
(Theorem 5.1) that there exists a bound for #R{X,Y), depending only
on X. Namely, it depends on the selfintersection K^ and on the index rx^
of the canonical model Xc of X.

In the review of Sh. Kobayashi ([Kob], problem D3) the question is
raised if for a compact complex space X and a hyperbolic compact complex
space Y the number of surjective meromorphic maps from X to Y can be
bounded only in terms of X. Theorem 5.1 is an answer to this question for
threefolds of general type.

Further on all the varieties are complex; we do not make difference
between line bundles, divisor classes and the divisors themselves, if no
confusion may arise. We fix resp. recall the following notations, which are
used in the paper:
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X, Y - complex varieties;

R(X, Y) - the set of rational dominant maps from X to V;

F{X) - the set of pairs (V, /), where Y is of general type and / C R(X, V);

^n(X) - the subset of those pairs (V, /) for which the m-th pluricanonical
mapping of a desingularization of Y is birational onto its image;

(/ : X -^ Y) ~ (A : X -^ Vi) iff bo f = /i, where b eBir(y,yi);

Kx ~ the canonical sheaf of a variety X with at most canonical singularities;

K^ - the n-times selfintersection of the class Kx^ where n =- dim^ X;

Ci(X) - the 1th Chern class of the variety X;

H^(X,D)=H^{X^Ox{D)^ hi{X^D)=dlmcHi(X^D^

X(X,D)=E(-W^^);
i=l

Xc - the canonical model of a variety X of general type of dim^X ^ 3;

TX ~ the index of a variety X with at most canonical singularities;

^mKY ~ tne ^-th. pluricanonical map from a variety Y with at most
canonical singularities.

1. Effective estimates of -R(X, Y) for smooth
manifolds X, Vwith ample canonical bundles.

The main theorem of this section is Theorem 1.6 below. It provides an
effective estimate for #R(X^ Y) if X, Y are smooth manifolds with ample
canonical divisors.

We first recall some notations and facts about duality:

a) A subspace E C P^ is called linear if it is the projectivization
of a linear subspace Ea C C^1. Let p : C^1 -^ (C^^* denote the
canonical isomorphism between C^"^1 and the space (C7^1)* of linear
functionals on it, which is given by the standard hermitian product on
C^+i. We denote by (P^)* resp. £* the projectivizations of (C^4-1)* resp.
of p^") C (C^1)*, and call them the conjugate spaces to P^ resp. E.
(We don't use the word 'dual' here in order not to have confusion with the
notion of a dual variety which is defined below.)
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b) We call a rational mapping L : P^ -^ PM linear if it is the
projectivization of a linear map L" : C^"1'1 —> C'^4'1. The projectivization
of the induced map (L0)* : (C^1)* -^ (C^^)* is denoted by L* and
called the dual map to L.

c) Let Z be an n-dimensional projective variety embedded into the
projective space P^. In any non-singular point z G Z the projective tangent
plane Tz is well defined. In the conjugate projective space (P^)* we consider
the set Z^ of all points y G (P^)* such that the corresponding hyperplane
Hy C P^ contains the tangent plane Tz to some nonsingular point z € Z.
We define the dual variety Zv of the variety Z to be the closure of Z^ in
the Zarisky topology.

d) The dual varieties have the following fundamental properties
([DelKat]):

1) If Z is nonsingular and Kodaira dimension k(Z) > —oo, then Zv is
irreducible and codim Zv = 1.

2) Moreover, if L is a hyperplane section of Z C P^, the degree degZ^
of the variety Zv may be computed by the Chern classes:

(1) degZV = ̂ (-l)^! + z)cl(L)c,-,(Z),
i=0

where ci(L) is the first Chern class of the line bundle corresponding to L.

3) Z^ = Z.

Let X and Y be two smooth projective n-dimensional varieties with
Kodaira dimension bigger than infinity, and let E and F be very ample
line bundles on X and Y respectively. Then the varieties X and Y are
canonically embedded into the projectivizations of the conjugate spaces to
H°(X,E) and to H°(Y\F) respectively, which we denote by P^ and P^

Let / : X—-> Y be a rational dominant mapping, and let ^ :
H°(Y, F) —^ H°(X^ E) be an injective linear map. We call / to be induced
by the map ^ if the projectivization of the dual map ^*, restricted to X,
is the map /. Denote by R{X, E, V, F) the set

R{X^ £\ y, F) = {f € R(X^ Y) : f is induced by an injective linear map

^:^°(y,F)-^°(X,E)}.
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PROPOSITION 1.1. — If the set R(X, E, Y, F) is finite, we have:

#R(X^E^F)^m(E)^

where

m(E) = ̂ (-^^(l+^K^c^W,
i=0

W = (h°{X^E))2 - 1.

Before we start with the proof of Proposition 1.1, we need two lemmas.

LEMMA 1.2. — Denote by G the set of all linear injections A :
(pMy _^ (pN)* ^^ ̂  ^yV) ^ ^y ^^ Q ^ ^ quasiprojective
subset ofP^, K = (N + 1)(M +1) - 1, of degree

(2) degG ^ {degXV)K.

Proof of Lemma 1.2. — Any element of G is defined by a (TV + 1)
(M + 1) matrix A, and its components (a^-) may be considered as its
coordinates in the projective space P^, K = (N + 1)(M + 1) — 1. Since
codim Xv = 1, it is defined in (P^)* by a single equation F{ZQ, . . . , ̂ ) = 0
with degF = degX^. If y ^ Yv we have A(^/) e Xv\ and so F(A^/) = 0.
For a fixed point y and a fixed polynomial F this is an equation for the
coordinates a^- in the space P^.

This means that for any finite sequence of points 1/1, ...,2/r?^ ^ ^v,
the set G is contained in the algebraic set G^, defined by equations

F(A2/i) = 0

^(A^) = 0

in the space P^.

Choose any point y\ € Yv. Suppose that G ̂  G^\ where G denotes
the Zariski closure of G in P^. Then there exists a point y^ such that for
some A e G^

F(Ay^) + 0.

Define the set G^ by the pair 2/1,^/2. It follows that G^ C G^\ and for
some component G of G^ all components of G^ which lie in G (if there
are any at all) are of smaller dimension than G. After performing a finite
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number of such steps we get a set 2/1, y^,..., ̂ , such that G^ == G. Hence,
G can be defined in P^ by equations of degree degF ==. degXV only. Now,
the inequality

degG ^ (degXV)K.
follows from the

SUBLEMMA (the analogue of the Bezout Theorem). — Let X C P71 be
an irreducible variety, dime X = i, degX = a. Let Fi, ...Fs be homogeneous
polynomials of degreed and Xs = {z C P" : F[(^) = ^2(^)=...=^s(^)=0}.

^
Assume that XHXg = |j Bj is a union of irreducible components Bj. Then

.7=1

deg(X H Xs) = ̂  degB^ ^ a^.
j

Proof of the Sublemma. — We perform induction by i = dim^ X. If
z = 1, there are two possibilities:

1. Fk \^= 0 for all k = 0,...,s; then X = Bi,AT = 1, and degBi =
degX = a.

2. Fi \^ 0. Then X H X^ C X H Xi is a finite number T of points
and

T^deg(XnXi) ^ad.

Assume that the fact is true for every z < m. If Fjc \ = 0 for all
k = 1,...,5, then TV == 1,X = Bi and degBi = a. If Fs \^ 0, then
X D {FS = 0} == |j Aq is a union of irreducible components Aq such that
riq = dim Ag < m and

^ degA^ ^ ad
q

(see, for example, [Har], Th.7.,ch. 1). Let Aq nXs-i = [JB^ Since
r

UB^r=(UA^)nx-l=xn^=UB^
9^ \ q / j

and all -B^ and ^ are irreducible, we obtain that for any j there are
numbers (q,r) such that Bj = Br. Thus

^deg^.^deg^.
3 9,y
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By induction assumption

^deg^ ^ degA, d^ ^ degA, d"1-1.
r

Summation over 9 provides the desired inequality:

^ degB, ̂  ̂  deg^ ^ ̂  degA.cT1-1 ^ d771-1 ̂  degA, ^ a^.
3 Q r q q

D

Let G == |JG^ be the decomposition of G in irreducible compo-
i

nents Gi.

LEMMA 1.3. — Suppose that the points i^i^ € Gi define linear maps
Aj, j = 1,2, which are dual to linear projections A^ : P^ —)• PM satisfying
A^X) = Y (i.e. f, := A]\x e R(X^E^F)). Then /i = /2.

Proof of Lemma 1.3. — From now on we fix a basis in P^ and P^ Let
t € Gi and let At be a linear embedding At: (P^* -^ (P^)* corresponding
to a point t.

Consider the following diagram:

X C P^ ^ (P^)* D X^

i A? |̂  i A,* U

^t C Lt ^ Et D X^H^

^t iTf T At

"̂  Q pM ^ /pM\* -^ Yv

In this diagram:

1) At is a linear embedding of (P^* into (P^)*.

2) Ef = A^P^*) is a linear subspace of (P^)*, which is isomorphic
to (PM)*.

3) The dual map A^ : P^ —^ PM is the composition of a projection of
P^ onto the subspace Lt C P^, which is dual to Ef, and of an isomorphism
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Tt : Lt —> 1̂  (recall that we have chosen a basis in P^ and a dual basis in
(P^)*). The projection we again denote by A^.

4) Xt=A^X)cLi.

Now the linear map At induces a dominant rational map ft : X —> V, iff
Tt(Xi)=Y.

In order to proceed with the proof, the following two claims are
needed.

CLAIM 1. — Let Ri(x^t\i = 1,..., I , be a finite number of polynomials
in the variable x € P^ with coefficients which are polynomials in the
variable t € T, where T is an irreducible projective variety. Let Vf = {x €
P^ : Ri(x,t) = ... = Ri(x,t} = 0}. Assume that for some point to C T,

r(x,to) = ranlJ ^l(^to) } = k

for all x € Vty. Then the set of points t € T, such that r < k for some
x € Vt, is proper and closed in T.

Proof. — Consider the sets A = {(x,t) e P^ x T : r(x,t) < k} and
B = {(x,t} C P^ x T : x € Vt}. Since A U B is Zariski closed in P^ x T,
its projection to T is Zariski closed in T. Since there is at least one point
^o, which does not belong to the image of this projection, it has to be a
proper Zariski closed subset, n

By the assumption Gi has two points ^i, i^ denning the maps /i,/2 ^
R(X^E^F).

CLAIM 2. — Let T ' C Gi be the set of points t € Gz, for which
the image Xf of the projection of X into Lf is smooth and of the same
dimension as X. Then T ' is Zarisky open and contains ^i, t^.

Proof. — We apply Claim 1 with T = G,, P^ = Lt and where the
Ri(x^t\ i = 1,.... I are the resultants of the polynomial equations of X in
P^. Then Vt = Xf is smooth in the point x iff the rank r(x^t) is maximal.
Since ti,^ define the maps /i,/2 € R(X,E,Y,F), the varieties X^ are
isomorphic to Y through the maps T^. Especially X^.X^ are smooth and
of the same dimension as X. Now Claim 2 follows from Claim 1. D

Using Claim 2, we will show that all t e T' correspond to maps ft C
jR(X,£',y,F), and moreover, that ft does not depend on the parameter
t € T ' . Especially, we get /^ = f^.
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Since X^ is isomorphic to V, we get for the Kodaira dimensions
k(X^) = k(Y) > —oo. Applying the invariance of plurigenera to the
algebraic family with base T ' and fiber Xf ([Har], 9.13, ch.3), we get
that k(Xt) > -oo for all t e T ' . Then X^ has to be an irreducible
hypersurface in £^, contained in Xv D Et. Thus Xv D Ef contains an
irreducible component Ct such that Ct = X^f, and C^ = X^ = Xt. Let
Bt,i be other irreducible components of Xv C\Et. Then B^ C Xt. Since Xt
is irreducible, we get dimB^ < dimXt. Thus, the intersection Xv H Et is
a union of irreducible components B^ and Cf, such that

a) the components Bf^ C Et are dual to some subsets of Xt (actually,
the image of singular points of the projection of X to Xf) of dimension less
than n = dim^X;

b) the component Ct C Et is the only one which has n - dimensional
dual, and C^ = Xt.

For any point t G T" the variety At(YV) is isomorphic to Yv. Thus
{At(YV)}v is isomorphic to Yvv = Y and, hence, it is n-dimensional. On
the other hand, At(YV) is contained in Xv D Et and is irreducible and of
the same dimension as Xv n Et. Hence, A^V^) = Ct = X^.

That means that At is an isomorphism between (P-^)* and Et such
that A^V^) = X^ C Et. Then the dual isomorphism 7-1 = A^ |^ : Li —^
P^^ maps (Xt)^ = Xf onto Y^ = V (see [HowSomI]). It follows that
the map ft = Tt o A^ |,, belongs to R(X^E^Y^F). Since the latter set is
finite and the family of the projections A^, which give ft : X —f V, varies
continuously over T", the map ft does not depend on t. D

Proof of Proposition 1.1. — A mapping / e R(X^E^Y^F) is, by
definition, induced by a linear injection ^ : H°(Y,F) —^ H°(X,E). More
precisely, if we denote by / : P^ —>• PM the projectivization of the dual
map ^* to ^, then / = f\x.

Using the surjectivity of the maps f : X —^Y and / : P^ -^ PM, an
easy computation yields that the dual map /* : (P^* -^ (P^)* maps V^
into X^.

By Lemma 1.3 the number of mappings in R(X, £', V, F) is, at most,
the number of irreducible components in G, which obviously does not
exceed the sum of degrees of these components. Since the mappings in
R(X,E,Y,F) are induced by injections of H°(Y,F) into H°(X,E), we
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have

M =: h°(Y,F) - 1 < h°{X,E) -1=N.

By the formula (1) we get, for degXV:

degXV = ̂ (-1)^(1 + z)cl(^). Cn-i{X).
i=0

To obtain the statement of Proposition 1.1 it suffices to insert these
values into equation (2). n

Using Proposition 1.1 we obtain the following

THEOREM 1.6. — Let X, V be two smooth complex pro jective varieties
with ample canonical bundles Kx o-nd Ky. Let R(X^Y) be the set of
dominant rational maps f : X —> V, and let the divisors sKx^sKy be very
ample (for example s may be 2 + 127^ ([Dem])). Then

{^(^-2&+9n-2(.))}2

#R{X^Y) ̂  (-1)^(1+z)^POcn-z(X)
i==0

where, for each n, qn-2(s) is a universal polynomial of degree n — 2.

Proof of Theorem 1.6. — Let E = sKx, F = sKy and / G
R(X, £', V, F). If /* here denotes the pull back of pluricanonical forms by
the rational map /, we get, by [lit], Theorem 5.3, that /* : H°(Y, msKy) —>

^(X, msKx) is an injective linear map for any m e N. (Since the divisors
E and F are very ample, any rational map / € R(X, Y) is even regular
([Bani]), but we don't need this fact here.) It is easy to see that the map / is
induced by the linear map /*. That is why R{X, Y) = R(X, sKx.Y, sKy).
Since this set is finite ([KobOch]), we can apply Proposition 1.1:

#R{X, Y) = #J?(X, sKx^ sKy)
I h°{X,sKx)2-^

< \^-^^^+^Vc{(Kx)cn^X)
,i=0

In this expression we substitute —c\{Kx) by ci(X) (these numbers are
equal). Further, by the Riemann-Roch Theorem and the Vanishing Theo-
rem for ample line bundles

h\X^Kx}=x{X^Kx)=K^
.n-l

nl" 2(n-l)! +^),
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n-2
where P(s) = ̂  OiS1 is a polynomial of degree n — 2 in 5, the coefficients

1=0
of which are linear combinations of monomials of the form cj(X) =
c^ (X)... c^ (X), ?i + • • • + ik = n.

According to ([FulLaz], [CatSch]), there exist universal constants Pj,
depending only on n, such that

\ciW\^DiK^

It follows, that there are other universal constants Z^, i = 0,..., n—2, which
depend only on n, such that

|P(.)|<^|a,|^^^-^A-^
i=0 z=0

Hence, it is possible to choose
n-2

qn-<2{s)=^Dis^' D

i=0

2. Effective estimates for pluricanonical
embeddings for threefolds.

This section is motivated by the following

QUESTION 2.1. — Let Y be a smooth protective manifold of dimension
n which is of general type. Does there exist an integer m, depending only
on n, such that the m-th pluricanonical map ^>rnKy '• ^ —)> ^mKy (X) ls

birational onto its image ?

It is well known (cf. [BPV]) that for curves we can choose m = 3, and
for surfaces we can choose m = 5. Luo conjectured in [Luol], [Luo2] that for
the case of threefolds the answer to the question should also be affirmative.
In these two papers, he proves his conjecture in 'almost all5 possible cases.
Especially he shows Theorem 0.3 (cf. Theorem 5.1, Corollary 5.3 of [Luol]).

When the second named author gave a proof of Conjecture 0.2 for
threefolds (cf. [Det]) he was not aware of the papers [Luol] and [Luo2]
of Luo. So he independently gave a proof of Theorem 0.3, using however
the same basic idea (apparently both proofs were motivated by the paper
[Flet] of Fletcher). Since the proof given in [Del] seems to use the basic
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idea in a shorter way and, moreover, easily gives effective bounds, we want
to include it here. More precisely we prove the following statement:

THEOREM 2.2. — Let C be a positive integer. Define R = Jcm(2,3,....
26G - 1) and m =lcm{4:R 4- 3,143C + 5). Let Y be any smooth protective
threefold of general type for which \(Y, Oy) ^ C holds. Then ^rnKy : Y -^
^mKy (^) ls birational onto its image.

For the convenience of the reader and to fix further notations we recall
some facts on which the proof is built.

We need the Plurigenus Formula due to Barlow, Fletcher and Reid
(cf. [Flet], [Rei2], see also [KolMor], p. 666 for the last part):

THEOREM 2.3. — Let Y be a projective threefold with only canonical
singularities. Then

X(Y, mKy) = -^ (2m - l)m(m - 1)K^ - (2m - 1)^(V, Oy) + ̂  1{Q, m)
0

with
,_ . ^bk^-bk) r<l-\. . ^bk(r-bk)
^m) = E 2r = -^-(m-m) + E 2r 'K—i fc==i

Here the summation takes place over a basket of singularities Q of type
-(a, —a, 1). j denotes the smallest nonnegative residue ofj modulo r, and
b is chosen such that ab = 1.

Furthermore,

index (Y) = lcm{r = r(Q) : Q e basket}.

Hanamura ([Han]) proves:

THEOREM 2.4. — Let Y be a smooth projective threefold of general
type, which has a minimal or canonical model of index r. Then for any
m ^ mo the m-th pluricanonical map is birational onto its image, where

mo = 4r + 5 for 1 ^ r ^ 2

mo = 4r + 4 for 3 ̂  r ^ 5

mo = 4r + 3 for r ^ 6.

In the last step of the proof we use the following theorem of Kollar
(Corollary 4.8 in [Kol2]):
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THEOREM 2.5. — Assume that for a smooth projective complex
threefold Y of general type we have h°(Y, I K y ) ̂  2. Then the (111 + 5)-th
pluricanonical map is birational onto its image.

For estimating from below the terms l(Q,m) in the Plurigenus For-
mula, we need two propositions due to Fletcher [Flet]. In these propositions
[s] denotes the integral part of s C M.

PROPOSITION 2.6.

^lo,-!,!)^^^^-^3^1-2771) ̂ ^m
V / 12r • 12 L r J *

PROPOSITION 2.7. — For a,{3 C Z with 0 ^ (3 ^ a and for all
m ^ [(a + 1)/2], the following- holds:

I ( - ( a , -a, l ) ,m) ^ ^ Q(l, -1,1), m\ .

The basic idea of the proof is the following: We look at the canonical
model of the threefold V, which exists by the famous result of Mori [Mor],
combined with results of Fujita [Fuj], Benveniste [Ben] and Kawamata
[Kaw]. If the index of the canonical model is small, we can finish the proof
by using Hanamura's Theorem. If the index is big, we use the Plurigenus
Formula due to Barlow, Fletcher and Reid to show that for some m we
have h°(Y, mKy} ̂  2, and finish the proof by using Kollar's theorem.

Proof of Theorem 2.2. — We first observe that by a theorem due to
Elkik [Elk] and Flenner [Flen] (cf. [Rei2], p. 363), canonical singularities
are rational singularities. Hence, by the degeneration of the Leray spectral
sequence we have

X(r,0y)=x(^0yj.

If the index of Yc divides R, we apply Hanamura's Theorem and get that
^(4j?+3)Xy embeds birationally. Hence, we may assume that the index
does not divide R. Then in the Plurigenus Formula we necessarily have
at least one singularity Q in the basket of singularities which is of the type
-(a, -a, 1) with r ^ 26C. Applying a vanishing theorem for ample sheaves
(cf. Theorem 4.1 in [Flet]), the fact that K^ > 0 (since Ky, is an ample
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Q-divisor) and finally Propositions 2.6 and 2.7 of Fletcher, we obtain:

h°{Y^(13C)KY^
=xOUl3C)^yj

^ (1 - 26C)x(Y^ Oyj + ^ Z(Q, 13G)
Qebasket

^(1-26G)C+W,13G)

^(1-26C)C+^^(1,-1,1),13G)

= (1 - 26G)C + 13C(13C-1)(78C+1-26G)

52G2 - 15C - 1 36
= ————^———— ^ ^T = 1.5.24 ' 24

The last inequality is true since C ^ 1. Since ^(Vc, (13C')^yj is an integer,
it has to be at least 2. From the definition of canonical singularities it
easily follows (cf. e.g. [Reil], p. 277, [Rei2], p. 355 or [Flet], p. 225) that
h°(Y, {IW)KY) ^ 2. Now we can finish the proof by applying Theorem 2.5
due to Kollar. n

Despite the fact that our m = m(C) is explicit, it is so huge that it is only
of theoretical interest. For example for C = 1 one can choose m = 269
([Flet]), but for C = 1 our m is already of the size 1013. Moreover, for all
examples of threefolds of general type which are known so far, any m > 7
works. So we guess there should exist a bound which is independent of the
size of the holomorphic Euler characteristic.

3. litaka-Severi's conjecture for threefolds.

The claim of this section is the following

THEOREM 3.1. — Let X be a fixed complex variety. Then the set of
targets ^{X)/ ~ with dimcV ^ 3 is a finite set.

By Proposition 6.5 of Maehara [Mae2], it is sufficient to show the
following: There exists a natural number m, only depending on X , such
that f{X) C Frn(X) for varieties Y with dim^Y ^ 3. Since we prove
finiteness only up to birational equivalence, we may assume, without loss
of generality, that X and all Y in Theorem 3.1 are nonsingular projective
varieties. This is by virtue of Hironaka's resolution theorem [Hir], cf. also
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[Uen], p. 73. Hence, using Theorem 2.2 or Theorem 0.3 of Luo we get
Theorem 3.1 as a consequence of the following:

PROPOSITION 3.2. — Let X be a fixed smooth protective variety and
f : X —» Y a dominant rational map to another smooth projective variety
Y with dim^ Y = n. Then we have

x(r,0y)< ^ /^(x,0x).
{i\2i^n}

Proof of Proposition 3.3. — First we obtain, by Hodge theory on
compact Kahler manifolds (cf. [GriHar], or [lit], p. 199)

h\Y^Oy)=h\YW^

where i = 1, ...n. The same kind of equalities hold for X. Now by [lit],
Theorem 5.3, we obtain that

h°(YW^h°(XW^

where again i = 1, ...,n. Hence, we can conclude:

X(y,0y)^ ^ /^(y,0y)= ^ h\Y^)^
{i\2i^n} {i\2i^n}

^ ^ h°(X,^= ^ h2i(X,Ox). D
{i\2i^n} {i\2i^n}

4. On the number of targets.

Let X be a smooth threefold of general type, and define r = rx ,
k=K^.

THEOREM 4.1. — There exists a universal constant C(r, k), depending
only on r and k, such that

#(^(X)/~KG(r,A:).
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THEOREM 4.2. — There exists a universal constant C"(r, k), depending
only on r and k, such that if Y is a smooth threefold and R(X, Y) ̂  0,
then

rY^C\r,k).

The rest of this section deals with the proof of Theorem 4.1 and
Theorem 4.2, which we prove simultaneously. We fix positive integers r
and k. Denote by X(r, k) the set of threefolds Xc with only canonical
singularities and ample canonical sheaves Kxc^ which satisfy rxc = r?
Kj^ = k. Let X be a smooth threefold such that Xc € X(r, k).

a) In this part of the proof we only consider targets ((V,/)/ ~) €
(^(X)/ ~) with dimcV = 3.

Due to Theorem 2.4 of Hanamura, the map

^9rKx : ̂  ̂  ̂

is birational onto its image, where, by ([MatMum])

N = h°(X, 9rKx) - 1 ̂  9^ + 3.

Moreover, by [BanMar], Lemma 1 (cf. also Proposition 2, part 2), the degree
dx of the image X' == ^QrKx (^) nas tne bound

dx ^ ^r^k.

Let Y be a smooth threefold of general type with R{X^ Y) -^ 0.

PROPOSITION 4.3. — There exists a universal constant Ci(r,/c),
depending only on r and k, such that we have

X(y,Oy)^Ci(r,/c).

Proof of Proposition 4.3. — By Proposition 3.2 we have

x(r,0y)^^(x,0x)+i.
In the Hilbert polynomials ^(Xc.mrKx^) the expressions l(Q,rm), cf.
Theorem 2.3, are linear in m, and so the two highest coefficients of the
polynomial ^(Xc, mrKxc) m the variable m only depend on r3k. But then
by Theorem 2.1.3 of Kollar [Koll], the family of the (X^rKx,), where
Xc € X(r,k), is a bounded family. That means there exists a morphism
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TT : X —> S between (not necessarily complete) varieties X and S and a Tr-
ample Cartier divisor D on X such that every (Xc^rKx^) is isomorphic
to (Tr"1^),?!^-!^)) for some s e 6'. So it is sufficient to prove that
there exists a constant Co which satisfies: For all s G S and for some
desingularization X{s) of?!-"1^) we have /^(^(s), 0^{s)) ^ Co ^-

This is shown by using first generic uniform desingularization of the
family TT : X —^ S (cf. [Hir], [BinFle]), and afterwards a semi-continuity
theorem (cf. [Gro], [Gra]). By applying generic uniform desingularization
and induction on the dimension there exist finitely many subvarieties
Si.i = 1,...,^, which cover 5, and morphisms ^ : Vi —>• Si between
varieties Vz and Si which desingularize Xi := Tr"^^) fiberwise, i.e., there
exist morphisms ̂  : Vi —> Xi over Si such that for any s G Si the map
^i: ̂ ^(s) —> 7^~l(5) is a desingularization.

Using semi-continuity for the families <I>^ : Yi —>• Si, we obtain finitely
many subvarieties S^,j = 1,...,^ of Si, which cover Si, and have the
following property: If we denote Vij := ̂ l(Sij) and ^ij := ^>i\y^., we get
that for the families <I>%j : Yij —> Sij the number Cij := h2^-1^), O^-i,^)
is constant for s € Sij. Hence, Co :== max C^ has the desired property.

j=i,'...,'^
D

Remark. — Proposition 4.3 can also be proved as follows. By a result
of Milnor ([Mil]) the Betti numbers of the variety X' = ^9rKx{^) have
estimates depending on its degree dx ^ 93r3k only. From the standard
exact cohomology sequences and dualities it easily follows that hl2^{X)
may be estimated by Betti numbers of X ' .

Using Proposition 4.3 and Theorem 2.2 we can choose an integer
p = p(^r, k), such that p is divisible by r, p ^ 9r and

<^ : y ̂  pM

is birational onto its image, where, by ([MatMum])

M = h°(Y,pKY) - 1 < p^k + 3.

W Remark that by an easy argument like in the proof of Proposition 3.2 any two such
desingularizations have the same h (X(s),0^-/^\).
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LEMMA 4.4.

1) The degree ofY' := ^pKy{Y) c PM is smaller than degX' < p3k.

2) For any map f G R{X',Y'), the degree df of its graph Ff C
pN ^ pM ^ ̂  greater than Sp^k.

Lemma 4.4 is a particular case of part 2 and 3 of Proposition 2 of
[BanMar] for n = 3, applied to the threefolds Xc,Yc and linear systems
\pKx^\, b^yj. We have to note only that Proposition 2 and Lemma 1 in
[BanMar] is stated for Cartier divisors. But only the fact that they are
Q-Cartier is used in their proofs, n

By Proposition 1 of the same paper ([BanMar]), there exist algebraic
families {X,px,T), (Z,pz,V), (V,PY,U) with constructive bases and
projections TTU •' V —^ U, 71-r : V —^ T, with the following properties:

1) For any Xc € X(r,AQ, there is a point t € T, such that Xc is
birational to X = p^(t), and all points t € T have this property.

2) For any Y with R(X,Y) ^ 0 for some Xc <E X(r,A;), there is a
point u e U, such that Y is birational to Y = py^), and all points u e U
have this property.

3) For any dominant rational map / : p~^(t) = X —^ Y = py^),
there is a point v € V, such that 7Tu(v) = u, 7Tr(v) = t, p~z1^) is a graph
of the map /, and all points v e V have this property.

Let V = {(t,v) e T x V\7TT(v) = t}, and denote by pr resp. py the
projections to the first resp. to the second factor. Through the composed
map TTuopv '-V—>U the variety V is also a variety over U. Let V = VxuV
be obtained by base change, and denote the projection to the first factor
by Pv : V —^ V- Then we have

V pv > V PT > T.

In this diagram, for every t € T, the set pj^^t) can be considered as the
set of graphs of dominant rational maps / : X —f V, where X = p^-1^),
and pv : V —^ V is the universal family of threefolds Y over the graphs of
f:X^Y.

By applying the process of local uniform desingularization, described
in Proposition 4.3, to the family py : y -^ V, we obtain a finite number of
smooth families (py)i : (V)i -> (V)z, i = 1,..., /, the bases (V), of which are
connected and cover V, and the fibers of which are desingularizations of the
fibers o f p v : y - ^ V . For any i the map {py)i : (Y)i -> (V)i is a smooth
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family of projective threefolds of general type over a connected base (V)z.
By a theorem ofJ. Kollar and Sh. Mori ([KolMor], Theorem 12.7.6.2) there
is an algebraic map ^ from (V)i to the birational equivalence classes of
the fibers of {py)i : (Y)i —^ (V)i. Moreover, all these fibers have the same
Hilbert function.

Prom this fact two conclusions can be derived:

1. Since the index of a canonical threefold can be bounded in terms of
the Hilbert function ([KolMor], p. 666), the indices of the canonical models
of the fibers of the family (py), : (J)), -> (V)i vary in a finite set of natural
numbers, only.

2. Let {pr)i ''= PT\(V), aln^ n^) be the number of irreducible
components of (pr),"1^) (itj "^Y be zero). Define, for X = P^(t), G(X) =
{y|(Y, /) e ^(X)}, and let ~ denote birational equivalence on G(X). Since
#(G{X)/ ~) < oo, it follows that the restriction ̂  to (pr)r1^) nas to be
constant on the connected components of (pr)^1^). Then

i
#(0(X)/-)^n^).

1=1

Since from the beginning the constructions of all the families were
algebraic and defined only by the constants r and k, we have proved
Theorem 4.2, and also the following

LEMMA 4.5. — There exists a universal constant C^(r^ k), depending
only on r and k, such that we have

#(^(X)/~)^C2(r ,A;) .

Next, we look at the map

(TTT.TTu) : V ^ T X U .

It is algebraic and any point of the fiber over (t, u) € T x U defines a map
from ^(Try1^),^1^)). The last set is finite for all (t,u), so we get:

LEMMA 4.6. — There exists a universal constant 63 (r, k), depending
only on r and k, such that

#R{X^Y)^C^k).
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From Lemma 4.5 and Lemma 4.6 the statement of Theorem 4.1 for
3-dimensional targets is immediate. The desired bound may be chosen as
C^k)C^k). n

b) Now we consider targets ((V,/)/ ~) € (^(X)/ ~) with dim^Y ^
2. For these targets we know that the indices of the Yc are 1 or 2. So we
can repeat the same argument as above, omitting however Proposition 4.3.
The only change which has to be done is replacing the moduli spaces due
to [KolMor] by the respective moduli spaces for surfaces or curves. So we
get Theorem 4.1, and in particular Lemma 4.5 and Lemma 4.6, also for
these kinds of targets, n

Remark. — According to [BanMar], there exists a universal function
o- in two variables, such that #R(X,Y) ̂  a{r • ry^k). This fact, together
with Theorem 4.2, yields an alternative proof of Lemma 4.6.

5. A conjecture of Kobayashi for threefolds
of general type.

In this section we prove

THEOREM 5.1. — For any complex variety X there is a number c{X)
such that

#^(X,Y)<c(X)

for any complex variety Y of general type with dime Y < 3. If X is a
threefold of general type, then c(X) can be expressed only in terms ofrx
and K3 .

^c

Proof of Theorem 5.1. — Like in Section 3 we may assume that X
and Y are smooth projective varieties. By [KobOch], #R{X,Y) is finite
for every fixed Y. By Theorem 3.1, we know that for given X there exist
only finitely many such V, up to birational equivalence. Since birational
equivalence does not affect the number #R(X,Y), the first statement
follows.

Let X now be a projective threefold of general type. Then the second
statement is just Lemma 4.6. Q

Remark 5.2. — The estimate which is given in Theorem 5.1 is not
effective.
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