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HARTOGS' PHENOMENON FOR POLYREGULAR
FUNCTIONS AND PROJECTIVE DIMENSION

OF RELATED MODULES OVER A POLYNOMIAL RING

by W.W. ADAMS, P. LOUSTAUNAU, V.P. PALAMODOV
and D.C. STRUPPA

1. Introduction.

In a recent paper, [I], the Cauchy-Fueter system was studied with
the purpose of analyzing the singularities of regular functions of several
quaternionic variables. We now recall the basic set-up of our problem. Let
f = (/o,/i,/2,/3) be a vector whose components are C00 functions in 4n
real variables ( $,0,^1,^2,^3; i = 1, • • •^n)- We say that / is left regular
if,
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Condition (1) is equivalent to

(2) I^O, z = l , . . . , n .
^Qi

By taking the Fourier transform of the matrix of differential operators
associated to Equation (1), one is led to consider the matrix

An=[U, £/2 • • • ^n],

where

XiQ Xit Xi-2 Xi3

^ -Xii XiQ Xi3 -a;̂

-Xi2 -Xi3 XiQ Xi\

.-Xi3 X^ -Xi-i Xio

for i = 1,. . . , n, and where the variables x^ are the dual variables of the
variables ^-.

Let R = C[xio, a-n, x^, x^ \ i = 1,. . . , n] and let pn be the maximal
ideal of R generated by the 4n variables. Given a matrix A, we denote by
(A) the ^-module generated by the columns of A. In [1] we showed, among
other things, that

pdGR^Ai)) = 1, and pd^R4^)) = 3,

where pd(M) denotes the projective dimension of an ^-module M. In this
paper we prove that, for every n ^ 1,

pd(Jt> 4/(A,))=2n-l,

EX^CR^A,), R) = 0,0 ^ j ^ 2n - 2, and Ext271-1^4^), R) ̂  0.

In Section 3 we show how this result has interesting and unexpected
consequences for the theory of regular functions. In particular we prove that
if 7Z is the sheaf of regular functions, then its flabby dimension, fl.dim(TZ),
is 2n - 1. In particular this shows that if U is any open set in EP and
p ̂  2n - 1, then HP(U, K} = 0. This result is a quaternionic version of the
famous result of Malgrange for holomorphic functions (see [7]) and we do
not see how it could have been proved by purely analytic methods. We also
give some results on the removability of singularities of the Cauchy-Fueter
system.
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We note that we can compute the projective dimension of R4:/{An)
for n = 1,2,3 using the software CoCoA^ which gives the explicit minimal
free resolutions of R4 /'(An) for n = 1,2,3. In the present paper we give an
algebraic proof of the equality pd^^An)) = 2n— 1 using techniques from
commutative and computational algebra, in particular Grobner bases. For
any particular n CoCoA could be used, in principle, to compute a minimal
resolution of R4/(An), however, running CoCoA on a Spare 10, we were
able to compute only the cases n = 1,2,3 (the machine crashed at n = 4,
and the file of the 4 matrices which define the free resolution for n = 3 is
128kbytes!)

2. Projective dimension of R4'/(An)•

In this section we compute the projective dimension of the JP-module
M,^ = R^/^An). Since nothing is changed in the proofs below until we get
to Theorem 2.6 we will assume until then that R is the polynomial ring in
the given variables over any field k.

If n = 1, it is straightforward to see that the syzygy module of A\ is
zero, and so pd(A/(l) = 1. From now on we will assume that n > 1. We
will use the Auslander-Buchsbaum formula (see, for example, [4, Theorem
19.9 and Exercise 19.8])

pd(Mn) = depth(^,J?) - depth(p^,A^n).

We recall that, for an ideal I of R and an -R-module M, the depth of I on
M, denoted depth(J, M), is the length of any maximal M-regular sequence
in I . The polynomials /i,..., fs € I form an M-regular sequence if

1. fy is a non-zerodivisor on M/(/i,..., /^_i)M, for v = 1 , . . . , 5;

2. M^(/i , . . . , / , )M.

See, for example, [4] for a thorough development of the notion of depth.
Clearly, depth(^,J?) = 4n, so we only need to compute depth (py^-A^n).
To do this we will exhibit a maximal A^n-regular sequence in pn-

(^ CoCoA is a special purpose system for doing computations in commutative algebra.
It is the ongoing product of a research team in Computer Algebra at the University of
Genova, Italy. It is freely available, and more information can be obtained by sending
an e-mail message to cocoaQdima.unige.it.
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This will be accomplished using the theory of Grobner bases (see, for
example, [2] for a detailed presentation of Grobner bases). Related ideas
were used in [8, ch. II, Section 2.4]. We first need a Grobner basis for (An}.
We use the degree reverse lexicographic (degrevlex) term ordering on R
with

(3) .TIO > X2Q > ' ' ' > XnQ > .Tn > • • • > Xnl > ̂ 12 > • • • > ^n3,

and the TOP (TOP stands for term over position) ordering on R4 with
ei > 62 > 63 > 64, where e^ is the zth column of the 4 x 4 identity matrix.
That is, for monomials X = x^° ' ' ' x^3 and Y = x^° ' ' ' x^3, we have

r deg(X) = ^ ^ > deg(Y) = ^ A ortij ^ w^i ) — / , pij

1=1,...,n i=l,...,n
.7=0,1,2,3 j'=0,l,2,3

Xcr > Ye. deg(X) = deg(V) and a^ < {3^ for the index ij,
last with respect to (3), such that a^- / (3ij or

X = Y and r < s.

LEMMA 2.1. — The reduced Grobner basis for the R-module (An) is
(n\given by the columns of An together with the columns of the matrices
\ ~ )

UrUs —UsUr. Moreover the module generated by the leading terms of all
the elements of (An), denoted Lt(A^), is

Lt(An) = (xioe^Xr2Xsie^) ̂  ^ .

l^r<s^n
^=1,2,3,4

Proof. — It is easy to verify the statement for n = 2,3, and 4 using
CoCoA. Let n > 4. The S-polynomial of any two columns of An can be
computed and reduced as in the case n = 2, and so the S-polynomials
generated by the columns of An give rise to the vectors in the columns of
the matrices UrUs -UgUr. To verify that the columns of An together with
the columns of all distinct UrUs - UgUr form the reduced Grobner basis
of (An), we need to verify that all the S-polynomials generated by these
vectors reduce to zero. An S-polynomial generated by a column of An and
a column of UrUs — UgUr is computed and reduced as in the case n == 2 or
3, depending on whether the column of An comes from E7y, Us, or neither.
An S-polynomial generated by two columns of UrUs - UgUr is computed
and reduced as in the case n = 2. An S-polynomial generated by a column
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of UrUs — UsUr and a column of UfUu — UuUt is computed and reduced as
in the case n = 3 or 4, depending on whether one or none of the indices
r, 5, and t^ u is the same.

For the statement about Lt(Ayi), we first note that, for 1 ̂  r < s ^ n,
UrUs - UsUr =

0 —Xr3Xs2 + Xr2Xs3 —Xr3Xsl + XrlXs3 Xr2Xsl — XrlXs2

Xr3Xs2 — Xr2Xs3 0 Xr2Xsl — XrlXs2 Xr3Xsl — XrlXs3

—Xr3Xsl + XrlXs3 Xr2Xsl — XrlXs2 0 Xr3Xs2 — Xr2Xs3

Xr2Xsl — XrlXs2 Xr3Xsl — XrlXs3 —Xr3Xs2 + Xr2Xs3 0

The result then follows immediately from the definition of the term
ordering, n

This result allows us to start an A^n-regular sequence in <pn-

COROLLARY 2.2. — The variables ^11,^25^3^ = l , . . . ,n form an
Adn-regular sequence of length n + 2.

Proof. — We note that the variables ^11,^712^35^ = l , . . . ,n are
precisely the variables which do not appear in any of the leading terms of
the elements of the reduced Grobner basis of (An} given in Lemma 2.1. In
general, if D is a submodule of R4 and a variable Xij does not appear in
any of the leading terms in a Grobner basis for D, then Xij is a non-zero
divisor on R^/D. This is because if 0 7^ g € R^ and g is reduced with
respect to the Grobner basis of D and x^g is in D then a^jlt(^) must be
divisible by the leading term of one of the elements of the given Grobner
basis and so then It (g) must also be divisible by the same leading term,
contradicting the fact that g is reduced. D

To enlarge this regular sequence, we consider the module

A< =Mn/{Xn,Xn2,Xi3,i = 1, . . . , n).A/(n

^^/(A^ {x^,Xn2,Xi3,i = l,...,n)I?4)

== R^/{Ui, UrUs - UsUr, x^e^ Xn2ee, Xi3e^) ̂  ^ .
l<^r<s^n
^=1,2,3,4

Let B = (Ui^UrUs — UsUr,xne^Xn2G^Xi3e^) ._, . We note that
1— 1,... ,71

l^r<s^n
^=1,2,3,4

the columns of UrUs — UsUr can be reduced, using Xr3^^ and ^53 e^,
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^=1,2,3,4, to the matrix

0 0 0 Xr2Xsl — XrlXs2

0 0 Xr2Xsl ~ XrlXs2 0

0 Xr2Xsl ~ XrlXs2 0 0

Xr2Xsl ~ XrlXs2 0 0 0

So we have

(4) B = {Ui, (Xr2Xsl - XrlXs2)e^ X^C^ Xn2e^ Xi^) ̂z==l,...,n
l^r<s^n
^=1,2,3,4

We note that the generators of B given in (4) form a Grobner basis
for B. To see this, note that the only S-polynomials we need to consider
are those computed using a column of Uz and one of (Xr2Xsl — XriXs2)e^^
xne^, ^n2^, or Xi^ei. The leading terms of the columns of Uz are x^e^
which are relatively prime to rcne^, Xni^ii and ^36^, and it is easy to verify
that the corresponding S-polynomials reduce to zero. The leading term of
(Xr2Xsl — XriXs2)^e is ^r2^si^, and so it is relatively prime to XIQ. Again,
it is easy to verify that the corresponding S-polynomials reduce to zero.

PROPOSITION 2.3. — The polynomials X2i + ^125 ̂ 31 + ^22? • • • 5 Xni 4-
^n-i,2 form a maximal Ad^-regular sequence in <pn-

Proof. — In order to show that the polynomials X2i + a'i25^3i +
X22^' • • 5 Xni + Xn-i,2 form a A^^-regular sequence in p^, we need to show
that the polynomial ^r/+i,i + Xy2 is a non-zero divisor on R^/By-i (for
^ = 1,2, . . . , n-1), where By-^ = (B, (^21+^12)^, (^31+^22)^,..., (^i+
^^-1,2)^).^-. g o . (and BQ = B). Then to show that the sequence is

maximal we will show that every element of pn is a zero divisor on
R^/Bn-l.

In order to do this we first find a Grobner basis for Bv-\ for 1 ̂  v ^ n.
This basis will consist of the following vectors:

a) The columns of Ui for 1 ^ % ^ n

b) Xi2Xs-i,2^ for 2 ^ s ^ v

c) xi2Xsi^e to1' v + 1 ^ s ^ n

d) Xr2Xnl^ for 1 ̂  7- < 72

e) (^2^5-1,2 - ̂ r-i,2^2)e^ for 2 ^ r < 5 ^ v
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f) {Xr2Xsl + Xr-l,2Xs2)^ fOT(2^r<^^<S<n

g) (Xr2Xsl - XrlXs2)e^ for V < V < S < U

h) x^en

l) Xn2^

j) 2^36^ for 1 ̂  i ̂  n

k) (.Tyi + ;z;7._i^)e^ for 1 < r ^ v,

where i = 1,2,3,4. These vectors are obtained from the vectors in the
generating set for B given in Equation (4) by substituting 0 for rcn and Xn2^
and —Xr-i,2 for Xri. Thus the given vectors do form a generating set for the
module £^-i. That this set of vectors forms a Grobner basis with respect
to the given order can be verified by checking that all the corresponding
S-polynomials in fact reduce to 0. Note that all of the vectors above are
written with their leading term first. Also note that in the extreme cases
for v^ i.e. v = 1 and v '= n — 1, the ranges in many of the above contain no
r or s. We denote this Grobner basis of By-\ by Gy-\.

We now verify that for v = 1, 2 , . . . ,n — 1, a^+^i + x^ is a non-
zero divisor on J?4/^-!. The verification will be made in the case where
all of the vectors in the above list appear. The extreme cases of v = 1
and v == n — 1 are the same but avoid some of the complications of the
following. So assume that we have a vector g in -R4 — By-\ such that
(^+1,1 + x^)g ^ By-\. We may assume that g is reduced with respect to
GI/-I. In particular this means that g can only contain the variables Xri
for v + 1 < r < n and Xg2 for 1 ̂  s ^ n — 1 (that the variables a-n, Xn2^ x^
(1 ^ i ^ n), and Xri (1 < r ^ z/) do not appear follows immediately from
the vectors in h), i), j), and k) in the above list for the Grobner basis for
B^_i; that the variables Xio for 1 ̂  i ^ n do not appear follows from the
fact that in the matrices Uz for 1 ̂  % ^ n there is a leading term of the form
Xi^Ci for 1 ̂  z ^ n and i = 1,2,3,4 and no XIQ in any other coordinate of
that vector in Ui.

We, of course, have that

(^+1,1 -f- Xy^)g reduces to zero by Gy-\.

Only the vectors in b), c), d), e), f), and g) in the list for the Grobner basis
Gy-\ above can ever be used to reduce (.z*^+i,i + Xy2)9' Now g must have
a non-zero coordinate, say ge^ (for some {. = 1,2,3,4). Then, due to the
nature of the vectors in the Grobner basis G^-i that can be used to reduce
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(a^+1,1 + x^)g^ we see that

(a^+i,i +x^)g

must reduce to zero using the polynomials in the list below:

b) ^12^5-1,2 for 2 ^ s ^ y

c) x^Xsi for y + 1 ̂  5 ̂  n

d) .ry2^ni for 1 ̂  r < n

e) ^r2^s-l,2 - ̂ r-l,2^s2 for 2 ^ r < S ^ t/

f) ^2^51 + ^r-l,2^s2 f o r 2 ^ r ^ ^ < S < 7 l

g) Xr2xsl - xrlxs2 for V < T < S < n.

Denote this list of polynomials by ̂ -i. Note that g is reduced with
respect to ̂ -i and only involves the variables Xri for u-\-l ^ r ^ n and Xs2
for 1 ̂  s ^ n - 1. Thus one of the leading power products in JFf^-i must
divide lp((:z^+i^i + 3^2)^) = a^+i^lp(^) and cannot divide Ip(^). These
polynomials come from the polynomials in c) and f) in the list for Hy-\
above, and so we see that Xr2 must divide Ip(^) for one of r = 1, . . . , v.
Since g is reduced with respect to J^-i we see, using the polynomials in
c), d), and f) in the list for ̂ -i, that no Xri can divide Ip(^). Thus

n — ^al^ra^ . . /y.^-1 i h9 — xl2x22 xn-l,2 ' ^

where all of the terms in h are smaller than Ip(^) = x ^ ' ' ' x^^. Moreover
one of the a^, for 1 < r ^ v is non-zero. Then

(.r^+i,i + Xy2)g = ̂ ^+1,1^2 • • • ̂ -i^ + ̂ 2 " •

^^v-l^i^, xtv-{-\,2 ' ' ' x•nn-l,2 + (^^+1,1 + xl/2)h.

If ai ^ 1 then using the monomial in c) in the list for H^-\ we have that
(^+1,1 + x^g reduces to x^ • . . x^x^x^... x^ + (^,+1,1 +
Xy^}h. If ai = 0, then one of 02? • • • , ^i/ is greater than zero, say aj ^ 1
(2 ^ j < ^/), and so using the polynomial ^^+1,1^-2 + ̂ -1,2.^+1,2 in f) in
the list for Hy-\ we have that (a^+i,i 4- ^^2)^ reduces to

—r"1 • . . r^-2 r^""1^'"1'^1 /y^ /y.al/+l+l-at/+2 ^n-i
^ ^•-2,2^,2 ^--1,2 '"^,2^+1,2 ^+2,2 "•^71-1,2

-l-r0^1 . . . T1"''"1 /ra^+l/y.al/+l /y."^-! i /^ i ^ \ L-h^l2 ^-1,2^2 ^+1,2 • • • ̂ -1,2 + (^+1,1 + x^2)ft.
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We see that the second term in this last expression is larger than the
first term in the degrevlex ordering, since a^+i + 1 > ai/+i (the degrees
of the two monomials are the same). Thus the leading power product
in the reduced polynomial just obtained from (rr^+i^i + x^)g is either

Ol a^-! /y .O^+la^+1 ^"n-l ^ ̂  WM

"-'12 'xv-\,2xy2 a;^+l, 2 ' ' '"-'71-1,2 or a-/^+l,llPW •

Claim. — Let X be a term of h such that

/r Y ^ ^al /y0^-1 .y.^+l/y.^+l /y^-l
^+1,1^ ^ J/12 ' ' " ^^-1,2^1/2 •^+1,2 * ' ' ̂ n-l^-

Assume that a-^+i^X can be reduced using Hy-\. Then x^^^X can be
reduced to a term V, using ̂ -i, such that

V ^ -T"1 . . . /r"1'-1 /y.a^+l/r.a^+l . . . /r.0^-1

J <^ J/i2 ^i/-!^1^ •^+1,2 ^n-1,2-

Assuming the claim we complete the proof that a^+i i + Xy^
is a non-zero divisor on R^/By--^ as follows. We first observe that
x a ^ . ' ' ' x(^-~^^2•r^2+l^'4•4l32 ' ' ' xan^^2 C9ilm0^ De reduced using Hy-\. To see
this we note that since only the variables Xs2 appear we could only pos-
sibly use the polynomials in b) or e) in the list for B.v-\\ then since g is
reduced with respect to Hy-i^ x^ would have to appear in the polynomial
used to do the reduction, but this variable does not appear in any of the
polynomials in b) and e). Thus if x°^ • • • x^_~^2tz^2+l a;^I+4ll 2 * * * xa^^^2 ls ^ne

leading term we have a contradiction. Otherwise a^+i^lp^) is the leading
term and so must be reducible using B.v-\. Letting X = lt(/i) in the claim
and setting h' = h — \t{h) we reduce (xy^.\ i + x^)g to

^12 ' ' ' xv—\,2xv2 xtv-}-l,2 ' ' ' x'nn-l,2 + ^ + X^X + (X^-^-\^ + X^)h .

Since Ip(^) > Ip(^) we see that the leading term of this last expression is
either x ^ ' ' ' x^Z-^ ̂ x0^'1 xa^^ 2 ' ' ' xar^^2 or >z'^+l,llp(^'/)• ̂  ^ ls ^ne latter
then x^^-sL^lp^h') must be reducible using Hv-\' Thus the argument may
be repeated until we obtain an expression which must reduce to zero using
H^-\ but whose leading term is x^ ' ' • x^^^x^^xa^^2''' xar^^2 an(^ we

have again arrived at a contradiction.

It remains to prove the claim. As above, we see that Xy^^X can
only be reduced using the polynomials in c) and f) in the list for Hy-\
above. Thus .2:7-2 must divide X for some r = I, . . . , ; / . Moreover no
variable Xri can divide X since X cannot be reduced using Hy-\. Thus
X = x ^ x ^ ' ' 'x^Z^. Now if we can use the monomial ^12^+1,1 m c)
then Xy^\^X reduces to 0 and the claim is true. Otherwise Xr2 divides X
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for some r such that 2 ^ r ^ v. For the reduction of .r^+i \X we replace
.r^2^z/+i,i by —Xr-i,2^+1,2- Thus we need to show that

y
f^\ —————/r /T ^ ̂ al ^av-1 /y.^+1/^+1 /y^-l
^0; ——Xr-1,2^+1,2 < -^ ' ' ' •^-l̂ î  ^^l^ " * " ̂ n-l^

Xr2

under the hypotheses

X _ ^b-i ^n-i ^ Y — ^al /r""-1

— ^12 ' ' ̂ n-l^ < ̂  — ^12 ' * * ̂ n-l^

and
/r ^ ̂  /r"1 /y."1'-1 ^a^-^-1 a^+i 0^-1
^^+1,1^ ^ a-/12 a-/^-l,2"-;^/2 tI/I/+l,2 ^n-l^'

These two hypotheses guarantee that all terms present have the same
degree. From the first we choose £ such that

6^+1 = a^+i , . . . , bn-i = On-i, ̂  > a^.

Then the second hypothesis guarantees that £ ^ v. but then the left side of^
Equation (5), —^7—1,2^+1,25 has the exponent 6^+1 + 1 for 3^+1,2 while

^r2
the right side has the exponent a^+i = ^4-1 and both sides have equal
exponents for all Xr2 for r > v + 1. Thus (5) is true and this completes the
proof of the claim.

It remains to show that every element of <(pn is a zero divisor on
R^/Bn-i- We first need to reduce the Grobner basis given above for Bn-i-
First note that this Grobner basis is given by the following vectors:

a) The columns of Ui for 1 ^ % ^ n

b) ^12^5-1,2^ for 2 ^ s ^ n

d) Xr2Xni^£ for 1 ^ r < n

e) (^2^5-1,2 — Xr-i,2Xs2)^ for 2 ^ r < s < n

h)x^e^

i) Xn2^£

j) x^Ct for 1 ^ % ^ n

k) (*r^i + ̂ -1,2)^ for 1 < r ^ n,

where ^ = 1,2,3,4. We first note that we can use the vector in k) with
r = n to reduce the vectors in d) to Xr2Xn-l,2e£ fo1' 1 ̂  r < n. We now
look at the vectors in e). If s = n — 1 then use ^-1,2^71-1,2^ to reduce
(xr2Xn-2,2 — ^r-i,2^n-i,2)^ to .Tr2^n-2,2^. Then with this last vector we
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reduce the vector in e) with s = n - 2, (.Tr2^n-3,2 - ̂ r-i,2^n-2,2)^ to
a^2^n-3,2^. Continue in this fashion and we obtain the reduced Grobner
basis for Bn-\ consisting of the following vectors:

1. The columns of Ui for 1 ^ i ^ n

2. XsiXr^t tor 1 ^ r ^ s ^ n — 1.

3. x\\en

4. x^ei

5. rr^e^ for 1 ̂  i ̂  n

6. (xri + rcy-i^)^ for 1 < r ^ n,

where ^=1,2,3,4. Denote this Grobner basis by G.

So let / € pn be non-zero. If fe\ € Bn-i then /(ei + Bn-i) = 0 and
so e\ ^ Bn-i implies that / is a zero divisor. So assume that fe\ ^ Bn-i-
Then /(/ei + Bn-i) = f^e^ + B^_i, and so it suffices to show that for
any / € pn, j^e^ € Bn-\\ that is, show that /^i reduces to zero using
G. Since / € pn every term in /2 is of degree 2 or higher. Then, using the
columns of the L^'s, we can reduce /^i to a vector f^ with no variables
Xio (1 ^ i ^ n) in it and with all terms of degree 2 or higher. Then, using
the last four types of vectors itemized in G above, we can reduce f^ to a
vector ^ containing only the variables Xr2 (1 ^ f ̂  n — 1 ) and with all
terms of degree 2 or higher. Finally, using the vectors in 2) above, we see
/2 reduces to zero. n

We can now obtain the formula for the projective dimension of M.n.

THEOREM 2.4.

pd(Mn) =2n-l.

Proof. — By the Auslander-Buchsbaum formula we have

pd{Mn) = depth(p^,7?) - depth (pn,.Mn) = 4n - depth (p^,.Mn).

By Corollary 2.2 and Proposition 2.3 we have

depth(pn, Mn) = 2n + 1. D

Remark. — We now have a free resolution of R^/(An)

(6) c
0 -. JT2"-1——^r2"-2——.... -. R^ -^ A4" ̂  R4 -^ ^/{An) -^ 0
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(by the well-known Quillen-Suslin Theorem, we know that every projective
^-module is free, see [9]). By taking the dual of Resolution (6) we obtain
a complex

(7) 0 —> R4 —>R^ —> R^ —> . . . —> ̂ ^.^j^-i _^ o,

whose homology groups are, by definition, Ext\Mn,R)- We see that
the last homology, Ext^'^.Mn,^), in (7) is not zero. Indeed, if the
map R^-2 —> R7'271-1 is onto, then we obtain a matrix D with Dt

defining a map JT271-1 —> R^-2 such that CtDt = J, the identity. So
we get that DC = I as well and the map C in Resolution (6) splits,
R^-2 = imC^kerD. Since kerD is free and B restricted to kerD is one to
one we have obtained a shorter free resolution for R^/(An) than (7), which
violates Theorem 2.4.

It is actually possible to say more than this.

THEOREM 2.6. — Sequence (7) is exact except at the last spot, i.e.

Ext^Mn, R) = 0, for all j = 0 , . . . , 2n - 2
and

Ext^-^Mn.R)^^.

Proof. — We will prove in the next Proposition that the characteristic
variety V(Mn) of Mn (which can be defined, in view of [8, Proposition 2,
p. 139], as the set of points where the rank of An is strictly less than 4) has
dimension 2n+l. But then, by [8, Corollary 1, p. 377], we have immediately
that Ext^Mn, R) = 0 for j < 2n - 1 and Ext271-1^^, R) ̂  0. n

PROPOSITION 2.7. — The characteristic variety V(Mn) of Mn has
dimension 2n + 1.

Proof. — As observed above, the characteristic variety Vn = V(A4n)
is the subset of points <" C C471 where the rank of the matrix A^(C) is strictly
less than 4. We show that the algebraic set Vn has dimension 2n + 1 in a
neighborhood of an arbitrary point (° -^ 0 in Vn.

We write < = (Ci , . . . ,Cn) € Vn, where C i , . . . , C n e C4. We may
assume that Ci 7^ 0- Finally we write Cz = teo^i^^s), where ̂  € C,
for i = 1,... ,n.

We can consider each vector ̂  as the element ^ = ^o+$ai+^2J+^3k
of the complexified quaternionic algebra HC = HI 0^ C, where {l,i,j, k} is
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the standard basis for the C-vector space HC- This is an associative C-
algebra with involution Q = ̂ o - ̂ ii - $i2j - ̂ sk. It is easy to see that
the columns of An(C) correspond to the quaternions

Ci*, CiU Ci*J, Ci*k, €2*. C2U C2*J, C2*k,..., C, Ci, Cl, C;k.

The determinant of the first four columns of Ayi(C) is easily computed
to be (Ci*Ci)2, where ̂  = ̂  + ̂  + ̂  + ̂ 3. The equation Ci*Ci = 0
defines a quadratic cone V\ in C4 of dimension three.

For 77 C HC we define four complex subspaces of HI(C as follows. Set

^ = {wl9 e He} and L^ = {q e Hcl^ = 0},

^ == {qrj\q e He} and ̂  = {q € Hcl^ = 0}.
One of the first two spaces is the image of left multiplication in H(C by rj and
the other is the kernel of this map so we have that dim<c Lrj + dim^ L1- = 4.
We also have dime RT) + dim^ R^ = 4.

For rj ^ 0 and 77 € Vi, i.e. 77*77 = 0, we see that dim^ Ly, = 2. This
follows since the matrix of the map of left multiplication by 77 with respect
to the basis {l , i , j? k} is the first four columns of An with 77* substituted in
and the three by three subdeterminants of this matrix are readily computed
to all be multiples of 77*77, while 77 7^ O easily implies that not all of the two by
two subdeterminants are zero. Moreover, since L^ C L^ , we conclude from
looking at the dimensions that L^ = L^. We similarly get dim^ R^ = 2
and^=^.

We now show that

C C Vn if and only if Ci € Vi and ^ € R^ (2 ^ j <^ n).

First assume that <j € V\ and ^ C -R<^(2 ^ j ^ n). Then C,j = ̂ jCi?
for some qj € HC- So 0°^ € -L^* where ^ = l,i,j,k and so we see that the
column space of Ayi(^) is contained in the two dimensional space L^* and
so the rank of An(C,) is 2 < 4, and so ^ € Vn.

Conversely assume that ^ € Vn. Since dim^ L^ = 2 we may assume,
by symmetry, that ^* and <^i are linearly independent and so form a basis
for L^. Fix a j. Since the rank of An(C) is less than 4, we have that
(!^!'^Q^Qi are linearly dependent, and so there are complex numbers
^1^15^1,^1, not all zero, such that

Ci*(ai+&ii)=Cj(ci+dii).
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Since ̂  and <^i are linearly independent we must have one of ci, d\ non-
zero. Now if di = 0 then Cj = ^*Ci ^ ^Ci where q = (^(ai + &ii) and we
would be done. So assume that c?i 7^ 0. Similarly we would be done unless
we had complex numbers 03, ̂  ̂ 2, (fc? ^35^35 CB? ^3 with c?2 7^ 0, ^3 7^ 0 such
that

Ci*(a2+62i)=C;(C2+^2j)

and

^(as+^D-CJ^+dsk).

Multiplying these last three displayed equations on the left by ̂ , recalling
that CiC^ = 0, we obtain CiCj*(ci + dii) = 0, CiC^^ + (fcj) = 0, and
CiCJ(c3 + dsk) = 0. That is, we have

•ci + dii, C2 + d2j? C3 + dsk e L^^.

Now (Ci CJ) (Ci Cj*) * = 0 ̂ d so ci + dii, C2 + c?2j, 03 + d^k linearly independent
over C implies ^i(J = 0, since <jCJ 7^ 0 implies dim^L1^ = 2. Thus we
have

C;^=Lcr-
We conclude that CJ = C?^ ̂  some 9 G HC '̂-̂  thus Cj = (?*Ci ^ ^Ci? as

desired.

The dimension of Vn follows immediately:

dime Vn = dime Vi + (n - 1) dime ̂  = 3 + 2(n - 1) = 2n + 1.

D

3. Application to the theory of regular functions.

Let P(D) == [Pij{D)] be the 4n x 4 matrix of differential operators
defining the Cauchy-Fueter system (1). We have that

P(D): ^(R4")]4^^4")]471

and we denote by K = ̂ p the sheaf of C°° solutions of P, i.e. the sheaf
of regular functions (see Section 1). Note that, since P is an elliptic
system (see, e.g., [5]), we have K = ^p = P^, where V is the sheaf
of distributions. However a fundamental result of Bengel-Harvey-Komatsu
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(see [6]) shows that we also have 7^ = jt^, where B is the sheaf of
hyperfunctions. This fact immediately allows us to prove the following

THEOREM 3.1. — The sheafK has flabby dimension equal to 2n - 1.

Proof. — We first note that the matrix An is the transpose of the
Fourier transform of P{D\ so from Theorem 2.4 we have the complex (7)
which gives us

(8) PW
0 ———> ̂  ———> ff4—————>B4n ———>Br2 ———> . . . ———> B^-2 ———, gr-2n-l ———, 0,

which is a resolution of the sheaf ^p. This result is essentially due to
Ehrenpreis-Malgrange-Palamodov, but in the hyperfunction setting it was
actually proved by Komatsu (see [6] for details and references). Since
7^ = B13', as we noted above, and since B is flabby, Resolution (8) proves
that fl.dim(T^) ^ 2n — 1. On the other hand, the flabby dimension cannot
be strictly less than 2n — 1, since (see [6, Theorem 1.2]) this would
imply the vanishing of f̂271'"" !̂!71,!!71 ;̂? )̂ for every compact convex
set K in EP. This would imply that Ext^^.Mn,^) = 0, which would
contradict Remark 2.5 or Theorem 2.6. We have therefore proved that
fl.dim(TZ) = 2n - 1. D

Remark 3.2. — For n = 1,2 this result is implicitly contained in [5]
and [1] even though it was not explicitly stated.

Remark 3.3. — Theorem 3.1 generalizes to the sheaf of germs of
regular functions the well-known fact that fl.dim(O) = n, where 0 is the
sheaf of germs of holomorphic functions. Such a result was probably hard
to imagine before our computations in [1].

As we have shown in [5], all open sets U in El are cohomologically
trivial in the sense that

HP(U,n)=0 p ^ l .

In [I], on the other hand, we showed that this result fails for n > 1, since a
Hartogs' phenomenon occurs. This situation clearly mirrors what happens
for the sheaf 0 of holomorphic functions. In that case, the most important
result, due to Malgrange [7], states that, for any open set U C C77',

HP(U, 0) = 0 p ^ n .

In our case, the analog of such a statement is an immediate corollary of
Theorem 3.1.
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COROLLARY 3.4. — If U is any open set in W1, then

HP(U,n)=0 p^2n-l.

Once again, we believe this result to be quite unexpected. We do not
know of any analytic proof for it.

Let us now explain the significance of these results for the construction
of a theory of quaternionic hyperfunctions. As it is well-known, see for
example [10], the theory of hyperfunctions is based on two key facts: one
is that the flabby dimension of 0 is n and the other is the fact that W1

is purely n-codimensional in C71 (see [6] or [10]). These facts allowed Sato
to define B as the n-th derived sheaf H^(0) of 0 restricted to W1. Itim" v '
is therefore clear that the present paper provides us with the first step
towards a similar construction. The difficulty will be to figure out which
subset S of HP should be chosen to restrict the derived sheaf. In [5], we
took

S = HI = {q = XQ + ix-t + jx^ + kxs, XQ == 0} C E

which is purely 1-codimensional and we were able to reconstruct the entire
theory.

We conclude by pointing out other interesting byproducts of the
results from Section 2. To begin with, one can use our arguments from
[1] to completely restore the duality theorem which prompted our interest
in this investigations.

THEOREM 3.5. — Let K be a compact convex set in W1. Then ifS
denotes the sheaf of distribution solutions to the system associated to the
matrix C* which appears in (7), then

^-^ir.iErv^) ̂  [^(^TZ)]'.

On the other hand, the vanishing of so many Ext-modules also gives
more information on removability of singularities of the Cauchy-Fueter
system.

THEOREM 3.6. — Let ^ be a convex connected open set in W1 = R471,
and let K be a compact subset of f2. Let Si,... ,1^-2 be closed half
spaces in M471 and set S = Si U ... U ^2^-2. Then every regular function
f G n\(^UE) extends to a regular function f C ^\E which coincides with
f in Q\(^' U S), for K ' a compact subset ofQ.
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Proof. — This is an immediate consequence of our Theorem 2.6 and
of [8, Theorem 4, p. 405]. D

THEOREM 3.7. — Let L be a subspace of W1 = R471 of dimension
2n + 2. Then for every compact K contained in L, and every connected
open set Q, relatively compact in K^ every regular function denned in the
neighborhood of K\fl, can be extended to a regular function denned in a
neighborhood of K.

Proof. — This result follows again from our Theorem 2.6 together
with [8, Theorem 3, p. 403] if we can prove that none of the varieties
associated to the module Ext2n~l(M.n^R) is hyperbolic with respect to
L. However, [8, Corollary 2, p. 377] shows that y(Ext2n-l(A^n,J?)) is
contained in V(M.n}^ and since M.n is elliptic, we can conclude that
every variety in V(Ext2n~l(A4n^K)) is elliptic and therefore cannot be
hyperbolic, n
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