Soit l’anneau des polynômes de variables. Soit la transformation de Fourier de la matrice d’opérateurs différentiels associée à la condition de régularité imposée à une fonction de variables quaternioniques, et le module défini par les colonnes de . Dans cet article nous prouvons que la dimension projective du module est . Nous prouvons ensuite, comme corollaire, que la dimension flasque du faisceau des fonctions régulières est , et que certains groupes de cohomologie sont nuls pour les ouverts de l’espace de quaternions. Nous démontrons que pour et que , et nous utilisons ce résultat pour prouver que certaines singularités du système de Cauchy-Fueter peuvent être éliminées.
In this paper we prove that the projective dimension of is , where is the ring of polynomials in variables with complex coefficients, and is the module generated by the columns of a matrix which arises as the Fourier transform of the matrix of differential operators associated with the regularity condition for a function of quaternionic variables. As a corollary we show that the sheaf of regular functions has flabby dimension , and we prove a cohomology vanishing theorem for open sets in the space of quaternions. We also show that , for and and we use this result to show the removability of certain singularities of the Cauchy–Fueter system.
@article{AIF_1997__47_2_623_0, author = {Adams, William W. and Loustaunau, Philippe and Palamodov, Victor P. and Struppa, Daniele C.}, title = {Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring}, journal = {Annales de l'Institut Fourier}, pages = {623--640}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {2}, year = {1997}, doi = {10.5802/aif.1576}, zbl = {0974.32005}, mrnumber = {98f:32013}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1576/} }
TY - JOUR AU - Adams, William W. AU - Loustaunau, Philippe AU - Palamodov, Victor P. AU - Struppa, Daniele C. TI - Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring JO - Annales de l'Institut Fourier PY - 1997 SP - 623 EP - 640 VL - 47 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1576/ DO - 10.5802/aif.1576 LA - en ID - AIF_1997__47_2_623_0 ER -
%0 Journal Article %A Adams, William W. %A Loustaunau, Philippe %A Palamodov, Victor P. %A Struppa, Daniele C. %T Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring %J Annales de l'Institut Fourier %D 1997 %P 623-640 %V 47 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1576/ %R 10.5802/aif.1576 %G en %F AIF_1997__47_2_623_0
Adams, William W.; Loustaunau, Philippe; Palamodov, Victor P.; Struppa, Daniele C. Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring. Annales de l'Institut Fourier, Tome 47 (1997) no. 2, pp. 623-640. doi : 10.5802/aif.1576. https://aif.centre-mersenne.org/articles/10.5802/aif.1576/
[1] Regular Functions of Several Quaternionic Variables and the Cauchy-Fueter Complex, to appear in J. of Complex Variables. | Zbl
, , , , and ,[2] An Introduction to Gröbner Bases, Graduate Studies in Mathematics, Vol. 3, American Mathematical Society, Providence, (RI), 1994. | MR | Zbl
and ,[3] Ideals defined by matrices, and a certain complex associated to them, Proc. Royal Soc., 269 (1962), 188-204. | Zbl
and ,[4] Commutative Algebra with a View Toward Algebraic Geometry, Springer Verlag, New York (NY), 1994. | Zbl
,[5] Sheaves of quaternionic hyperfunctions and microfunctions, Compl. Var. Theory and Appl., 24 (1994), 161-184. | MR | Zbl
, , ,[6] Relative Cohomology of Sheaves of Solutions of Differential Equations, Springer LNM, 287 (1973), 192-261. | MR | Zbl
,[7] Faisceaux sur des variétés analytiques réelles, Bull. Soc. Math. France, 85 (1957), 231-237. | Numdam | MR | Zbl
,[8] Linear Differential Operators with Constant Coefficients, Springer Verlag, New York, 1970. (English translation of Russian original, Moscow, 1967.) | Zbl
,[9] An Introduction to Homological Algebra, Academic Press, New York, 1979. | MR | Zbl
,[10] Microfunctions and Pseudo-Differential Equations, Springer LNM, 287 (1973), 265-529. | MR | Zbl
, , and ,Cité par Sources :