Random perturbations of exponential Riesz bases in L 2 (-π,π)
Annales de l'Institut Fourier, Volume 47 (1997) no. 1, pp. 201-255.

Let a sequence {λ n } be given such that the exponential system { exp (iλ n x)} forms a Riesz basis in L 2 (-π,π) and {ξ n } be a sequence of independent real-valued random variables. We study the properties of the system {exp(i(λ n +ξ n )x)} as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth 2π via their samples at the random points {λ n +ξ n }.

Soient {λ n } une suite donnée telle que le système exponentiel { exp (iλ n x)} forme une base de Riesz dans L 2 (-π,π) et {ξ n } une suite de variables aléatoires réelles indépendantes. On étudie les propriétés du système { exp (i(λ n +ξ n )x)} ainsi que des problèmes reliés aux estimations des fonctions entières ayant des zéros aléatoires, et des problèmes de reconstitution de signaux avec un spectre de largeur 2π à l’aide de valeurs de ces signaux dans des points aléatoires {λ n +ξ n }.

@article{AIF_1997__47_1_201_0,
     author = {Chistyakov, Gennadii and Lyubarskii, Yura},
     title = {Random perturbations of exponential {Riesz} bases in $L^2(-\pi ,\pi )$},
     journal = {Annales de l'Institut Fourier},
     pages = {201--255},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {47},
     number = {1},
     year = {1997},
     doi = {10.5802/aif.1565},
     zbl = {0860.42023},
     mrnumber = {98c:42028},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1565/}
}
TY  - JOUR
AU  - Chistyakov, Gennadii
AU  - Lyubarskii, Yura
TI  - Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$
JO  - Annales de l'Institut Fourier
PY  - 1997
SP  - 201
EP  - 255
VL  - 47
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1565/
DO  - 10.5802/aif.1565
LA  - en
ID  - AIF_1997__47_1_201_0
ER  - 
%0 Journal Article
%A Chistyakov, Gennadii
%A Lyubarskii, Yura
%T Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$
%J Annales de l'Institut Fourier
%D 1997
%P 201-255
%V 47
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1565/
%R 10.5802/aif.1565
%G en
%F AIF_1997__47_1_201_0
Chistyakov, Gennadii; Lyubarskii, Yura. Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$. Annales de l'Institut Fourier, Volume 47 (1997) no. 1, pp. 201-255. doi : 10.5802/aif.1565. https://aif.centre-mersenne.org/articles/10.5802/aif.1565/

[1] J.P. Kahane, Some random series of functions, Cambridge University Press, Cambridge, 1985. | MR | Zbl

[2] K. Seip and A.M. Ulanovskii, Random frames, to appear in Proc. London. Math. Soc.

[3] R. Paley, N. Wiener, Fourier Transform in the Complex Domain, AMS, New-York, 1934. | Zbl

[4] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. Vol. 19, Amer. Math. Soc., New York, 1940.

[5] B.S. Pavlov, Basicity of an exponential system and Muckenhoupt's condition, Sov. Math. Dokl., 20 (1979), 655-659. | Zbl

[6] S.V. Khrushchev, N.K. Nikolskii, and B.S. Pavlov, Unconditional bases of exponentials and reproducing kernels, in Complex Analysis and Spectral Theory (ed. V. P. Havin and N. K. Nikolskii), Lecture Notes in Math. 864, Springer-Verlag, Berlin, Heidelberg, 1981, 214-335. | MR | Zbl

[7] Yu. Lyubarskii, K. Seip, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap)-condition, Rev. mat. iberoamericana, to appear. | Zbl

[8] R.M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. | MR | Zbl

[9] A.J. Jerri, The Shannon sampling theorem - its various extensions and applications : a tutorial review, Proc. IEEE, 65 (1977), 1565-1596. | Zbl

[10] P.L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition, 3 (1983), 185-212. | Zbl

[11] J.R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc., 12 (1985), 45-89. | MR | Zbl

[12] J. Benedetto, Irregular sampling and frames, in Wavelets : A Tutorial in Theory and Applications (ed. C. K. Chui), Academic Press, San Diego, 1992. | MR | Zbl

[13] B. Levin, Basicity of exponential systems in L2, Notes of Mathematical Department of Kharkov State University and Kharkov Mathematical Society, 27, n. 4 (1961), 39-48 (Russian).

[14] B. Levin, Interpolation by mean of entire functions of exponential type, in Mathematical Physics and Functional Analysis, Kharkov, Institute for Low Temperatures, n.1 (1969), 136-146.

[15] B. Levin, Yu. Lyubarskii, Interpolation by mean of entire functions from special classes and expansions in series of exponentials, Izvestiya Akad. Sci. USSR, ser. Mathematics, 39, n. 3 (1975), 657-702. (Russian, English translation in Soviet Mathematics, Izvestiya).

[16] Yu. Lyubarskii, Series of exponentials in the Smirnov spaces and interpolation by mean of entire functions from special classes Izvestiya Acad. Sci. USSR, ser. Mathematics, 52, n. 3 (1988), 559-580. (Russian, English translation in Soviet Mathematics, Izvestiya).

[17] Yu. Lyubarskii, Frame in the Bargman spaces of entire functions, in Advances in Soviet Mathematics, 11 (1992), 167-180.

[18] Yu. Lyubarskii, K. Seip, Sampling and interpolation of entire functions and exponential systems in convex domains, Arkiv Mathematik, 32 (1994), 157-193. | MR | Zbl

[19] E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. | MR | Zbl

[20] H. Helson, G. Segö, A problem in prediction theory, Ann. Mat. Pura Appl., 51 (1960), 107-138. | MR | Zbl

[21] A. Beurling, Interpolation for an interval on ℝ1 in The Collected Works of Arne Beurling (two volumes), Ed. L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer, Birkhäuser, Boston, 1989, v.2, 351-366.

[22] A. Beurling, Balayage of Fourier-Stietjes Transforms, in The Collected Works of Arne Beurling (two volumes), Ed. L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer, Birkhäuser, Boston, 1989, v.2, 341-350.

[23] K. Seip, Density theorems for sampling and interpolation in the Bargman-Fock space I, J. rein & angew Math., 429 (1992), 91-106. | MR | Zbl

[24] R.A. Hunt, B. Muckenhoupt, R.L. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227-156. | MR | Zbl

[25] P. Koosis, Introduction to Hp spaces, Cambridge University Press, Cambridge, 1980.

[26] J.B. Garnett, Bounded analytic functions, Academic Press, New York, 1981. | MR | Zbl

[27] B. Levin, Entire functions, Moscow State University, 1971, (Russian); Revised edition in English : Lectures on entire functions, Amer. Math. Soc., 1996.

[28] A. Shirjaev, Probability, Moscow, Nauka, 1980 (Russian).

[29] H.P. Rosenthal, On the subspaces of Lp p > 2 spanned by sequences of independent random variables, Israel Journal of Mathematics, 8, n. 3 (1970), 273-303. | MR | Zbl

[30] H.P. Rosenthal, On the span in Lp of sequences of independet random variables, in Proc. 6-th Berkley Symp. on Math. Statist. and Probability, Berkley-L.A., Univ. Calif.Press, 1972, v.2, 149-167. | MR | Zbl

[31] C. Nagaev and G. Pinelis, Inequalities on distributions of summs of independent random variables, Probability Theory and its Applications, 22, n. 2 (1977), 254-263. | Zbl

[32] B. Levin, Distribution of zeroes of entire functions, GITTL, Moscow 1956; English transl. Amer. Math. Soc., Providence, R.I., 1964, 1980. | Zbl

[33] N. Akhiezer, Lectures on approximation theory, Moscow, Nauka, 1965 (Russian).

Cited by Sources: