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RANDOM PERTURBATIONS
OF EXPONENTIAL RIESZ BASES

IN L^-^)

by G. CHISTYAKOV (*) and Yu. LYUBARSKII (**)

1. Introduction.

a. We study the following question. Let a sequence of points A =
{\n} C R be given such that the exponential system

£(A) = {exp(i\nx)', \n e A}

forms a Riesz basis in the space ̂ (-Tr, TI-). Consider the system {exp(z(A^+
^n)x)}, obtained by means of a random perturbation of the exponents {An}
by a sequence {^n} of independent real random variables with expectation
zero:

(1.1) E(^)=0, n=0 ,± l ,±2 , . . . .

In contrast to the well-developed theory of classical Fourier series
with random coefficients (see the remarkable book [1]) only a few facts are
known in the case of random exponents. We mention [2] which considers
A = Z and equaly distributed ^n and which studies the dependence of the
frame property of the corresponding exponential system on the distribution
of$n.

(*) Partly supported by Soros grant U9S200.
(**) Partly supported by a NATO linkage grant LG 930329.
Key words: Exponential bases - Bandlimited signals - Paley-Wiener spaces - Entire
functions with random zeroes - Random series - Sampling - Interpolation.
Math. classification: 42C15 - 94A24 - 60H25 - 30D10.
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Let the random variables {^n} be denned on a probability space
(fi, A, P) and $n(o;) be the value of ̂  at the point a; € 0. We set

(1.2) An(^)=An+U^ A,={A,(a;)},

and also

(1.3) UA) = {x1 exp(iXnW}^\^.

Here, as usual, pn(= pn(o;)) denotes the multiplicity of the point An (a;)
in the sequence A^ and, i f p n > l , w e replace the coinciding exponentials
by the functions {x1 exp(i\n(^)x)}^Q1. In what follows we suppose that
the points \n(^) are pairwise distinct, if this does not essentially alter our
reasoning.

Recall that a system of elements {hk} in a Hilbert space H is said
to form a Riesz basis if each h C H admits a unique representation of the
form

h=^Ck(h)hk, Ck(h)eC,

and in addition

W^EM^I2^!!^
with some constants c, C > 0 independent of h.

In particular, each Riesz basis in H is a complete and minimal system
in ft, i.e. it ceases to be complete after removing at least one element from
the system {hjc}.

The study of completeness and minimality as well as the Riesz basis
property of a system of exponentials has been started in the classical books
[3], [4]. The necessary and sufficient conditions for a sequence A C R to
generate a Riesz basis £(A) have been obtained in [5] see also [6] and [7]. We
refer the reader to [8], [6] also for the history and full account of materials
concerning Riesz bases from exponentials in Z^-space on a segment.

In this article, we are interested in determining which basic properties
of £(A) as a system in ^(-Tr,^) are typical, i.e. they are almost surely
inherited by the perturbed system S^{A). Specifically we study

a) basis property; b) completeness; c) minimality.

We also study the reconstruction of functions in £2(—7^,7r) via their
expansions in the system £^(A).
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b. If the values of the random variables ^n belong to sufficiently
small intervals around zero, the stability theorems for a Riesz basis (see
for example [6], §2, p. Ill) provide that property a) (and, hence, b), c))
still remains valid. The situation changes drastically when the stability
theorems can no longer be applied. We shall see that, for almost all uj € ^,
the system fa/(A) no longer forms a Riesz basis, whereas properties b) and
c) are fulfilled under natural restrictions on the decay rate of the "tails" of
the distribution functions of the $n's.

Therefore under these restrictions, for almost all a; € f^, to each
function / € ^(—Tr,?!-) there corresponds a series with respect to the
system fo/(A):

(1.4) f[x) ~ ̂ Ck(f^)exp(i\k(uj)x).

In the typical situation there are two kinds of obstacles for this series
to be convergent: first, the points \k(^) no longer are separated, for almost
all uj € ^ there are couples (and even n-bunches for any finite n) of
arbitrarily close (maybe coinciding) points \k(^)\ second, as it will be
clear below, even the "separated part" of the sequence A^ generates an
exponential system that does not form a Riesz basis in its own linear span.

To bypass these obstacles we first consider a block summation proce-
dure taking as one block all the terms that correspond to close exponents
Afe(ci?); second, we prove that (with such summation procedure) the series
(1.4) converges in Z/^—Tr,?!') for all functions / satisfying the Lipschitz
condition with a positive exponent.

We shall also see that the random perturbations change the local
convergence properties of exponential series very slightly: at each point of
the interval (—7r,7r) and for each function / € ^(—Tr,?!-) the series (1.4) is
equiconvergent (with respect to the corresponding summation procedure)
with the usual Fourier series.

c. Another reason, which attracts our attention to the subject is its
(natural) connection with signal analysis problems. Consider the Paley-
Wiener space PW^^ i.e. the space of all entire functions of exponential
type (e.f.e.t.) not greater than TT such that

11^11^- F \F(t)\2dt<^.
J —00
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Each function F e PW^ admits the representation

F(t)= F e^/^cte, /eL^-Tr.Tr).
J—TT

One may treat the functions from this space as signals with bandlimited
(located on [-7r,7r]) spectrum (see e.g. surveys [9], [10], [II], [12]).

The (now) classical duality reasoning (see, for example, [6]) shows
that the system £(A) forms a Riesz basis in the space L^-Tr,?!-) iff it
possesses a generating function, i.e. there exists the limit

(i.5) sw=^ n (i-^)
\\r.\<R v n /

representing an e.f.e.t. TT and also each function F e PW^ may be recon-
structed via its samples {F(\n)} by means of the Lagrange interpolation
series

('•«) ^-E^.)^^),
which converges both compactwise and in L^—oo, oo). Thus we reformulate
the questions of this article as follows. Let the sequence {A^} € R determine
the bandlimited signals by (1.5),(1.6). What can one say (almost surely)
about its random perturbations {An + $n}? where {^n} is a sequence of
random variables as above? We prove that (under natural restrictions
on the decay rate of the "tails" of the distribution functions of ^s) the
sequence of values {F(\n + $n)} still determines the function F c PW^
uniquely, though the representation by interpolating series is not valid,
generally speaking. Nevertheless we shall see that this representation is
still valid under an additional decay condition: (1 + |t|)^F(^) e L^R) for
some (3 > 0.

d. One of our main tools and, partly, a purpose of this article is the
study of entire functions with random zeroes:

5,(A)= lim n f1-^)'
^|A.|<.A An^

5^ (A) is the generating function for the perturbed sequence A^. In order
to estimate such functions we develop specific techniques which combine
methods of function theory and probability theory and (we hope) are of
independent interest themselves.
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It appears that the obtained estimates match very precisely with re-
sults from function theory such as the Helson-Szego (or (As)- Mucken-
houpt) condition. Starting with these estimates and operating with the
methods that stem from the works [3], [4], [13], [14] and further [5], [6],
[15], [16], [17], [18] we study convergence and summability properties of
random series with respect to the system ^(A).

e. The article is organized as follows. The next section contains
the precise description of the problems and the statements of the main
theorems, and in this way it gives a complete outline of the article. In
Section 3 we collect the preliminary results on Riesz bases and probability
theory and also prove some preliminary statements. Section 4 contains
estimates on the imaginary axis of entire functions with random zeroes as
well as a simple estimate from above on a horizontal line - these estimates
provide the completeness and minimality theorems for exponential systems
with random exponents. Section 5 gives a precise two-sided estimate on a
horizontal line. This estimate is a base of the block summability procedure
for series (1.4), which is constructed in Section 6. In Section 7 we study the
local convergence of this series.

2. Statements of the main results.

a. Through the whole article we assume that the sequence
A = {An} C R generates an exponential Riesz basis in L^—Tr,?!-) and
the sequence of real independent random variables {$^} satisfies (1.1). We
also keep notations (1.2)-(1.5).

For the sake of simplicity we formulate the no-go theorem under
additional restrictions on the sequence {$n}.

THEOREM 1. — Let each random variable ^n have the distribution
density pn(t) and, for each T > 0,

(2.1) inf inf pn(t) > 0.
n \t\<T

Then

a. The system ^(A) does not form a Riesz basis in L^—Tr, 7r);

b. For almost all uj G ^ there exists a sequence {nfc}(= {n^)}) C Z
with the following properties:

(2.2) ^|A^)-A^(o;)|>0;
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the system {exp(i\nk{^)^)} does not form a Riesz basis in the closure of
its linear span.

This theorem is proved in items f - h of the next section.

b. In Section 4 we prove the theorems which grant existence of the
generating function S^(\) for the perturbed sequence of exponents A^,
compare the behavior of the functions S^ (A) and 5(A) and, finally, yield
the completeness and minimality theorems in L^—Tr,?!-) (as well as the
corresponding uniqueness theorem in the space PW^).

THEOREM 2. — Let condition (1.1) be fulfilled and, for some 6 > 0,

(2.3) supEd^l^Oo.
n

Then, for almost all uj € f2, there exists the limit

(2.4) ^(A)= lim TT fl-—^)
^lAi1^ An^

representing an e.f.e.t. TT.

In addition the following relation holds:

w 'r^S^S^0 as r-.^0e[W,0^0,n.

One can give a stronger estimate on the imaginary axis.

THEOREM 3. — Let condition (1.1) be fulfilled and, for some 6 > 0,

(2.6) supEd^l'^Oo.
n

Then, for almost alluj € 0, the following relation holds:

07\ r ^ 1^(^)1 ^ c n P TO(2.7) c<-^^<C,rj^R.

Here the constants c, C > 0 depend on u) € f2, generally speaking.

In the case

(2.8) supE(|^|2) < oo,
n
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a weaker estimate takes place:
(2.9)

cexp(-(log(l + H))3/4) < ^l^1 < Cexp((log(l + H))3/4), rj € R.

THEOREM 4. — Let conditions (1.1) and (2.8) be fulfilled. Then the
following statements hold (for almost all uj € Q,):

a. the system fo/(A) is complete in L^—Tr,?!-);

b. if a function F € PWyr vanishes on A^ (with account of possible
multiplicities) then F = 0.

c. In order to study the minimality of fo/(A) we need to estimate the
function |5o/(A)| from above on a horizontal line. This demands additional
conditions on the perturbations ^n-

THEOREM 5. — Let a sequence {$n} of independent random variables
satisfy (1.1) and also

(2.10) supE(|^r) <oo, m=2,3 , . . . .
n

Then the system 6^{A) is complete and minimal in L^—TI^TI-) for almost
all uj € ^.

Under the hypothesis of this theorem, for almost all uj € ^, one can
correspond to each function / € L^—T^TI-) its Fourier series in the system
UA):

pfc-i
(2.11) / ~ ̂  ̂  c^i(uj, f)x1 exp(i\kx).

k 1=0

d. To construct a summability procedure for such a series we also
need to estimate the function S^ (A) from below which, in turn demands
that we impose some additional restrictions on the distribution functions of
the ̂ s. In order to formulate these restrictions we introduce the following
definition.

DEFINITION. — A sequence {^n} of independent random variables
satisfying (1.1), belongs to the class B^^, 0,7 > 0, if

E(exp(|^|t)) ^ exp(a(exp(7t) - 1)), t > 0, n = 0, ±1, ±2,.. . .
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We also denote BQ = Q (J Ba^.
7>0o:>0

Example. — Let {^} be a sequence of independent centered Gaussian
random variables with uniformly bounded variances. Then {^} e BQ.

It should also be mentioned that a sequence of centered non-
degenerate Poisson-type random variables with uniformly bounded vari-
ances and Poisson spectrum does not belong to the class Bo. Nevertheless
it belongs to the class Ba,^ for appropriate values of a and 7.

The theorem below (proven in Sect. 5) compares the perturbed
function S^(\) on a horizontal line (as well as on some vertical segments
in the strip \Qz\ < 1) with the original function S(\).

THEOREM 6. — Let {(^n} e B^. Then there exists a constant a
independent of 7 and a such that for almost all uj e 0, the following
relations hold:

a.

(2.12) [C(o;,a,7)|^r]-1^ ^—§1 ^C(o;,a,7)|.r+r7, ^ € R
\^{X -\-l)\

with some constant C{uj^ a, 7) € (0, oo).

b.Jf

(2.13) dist(x,A^ UA) ^ -——, \x\ > 10,
log |.r|

then
(2.14)

[C(a;,a,7)k+zn-1^ ̂ ±M < ̂ 0,7)^ + ̂ P, 2 /C [-1,1].\^{x -h zy)\

One can choose the constant C(a;,a,7) such that both (2.12) and (2.14)
are fulfilled. Therefore we do not specify notation of the constant in these
relations.

c. For all but finitely many m € Z there exists x C [m,m + I],
satisfying (2.13).

Assuming {^} e BQ we wish to describe the summability procedure
for the series (2.11).
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DEFINITION. — Let a sequence U = {Rk}°°^, Rk -^ ±00 as k -> ±00
be given. Denote Ij, = [Rk, Rk+i)' We say that series (2.11) is U-summable
to the function f if the limit

N Pn-1

(2.15) f(x)=^l^ ^ ^ E^^^W^n^)
k=-M AnGJfc 1=0

exists. Explicit expressions for the coefficients Cn,z(^) are given below in
Sec.68i. In order to observe the class of functions for which the series (2.11)
is K-summable we need additional definitions and notation.

We use the Fourier transform in the form

(2.16) T : f -. ̂ (f)(t) = 1 F f(x) exp(-itx)dx
^ J —00

and consider PW^^ - the space of all e.f.e.t. TT such that

(2.17) Wpw^ = I " TOI'O + ̂ dt < oo,
J —00

and also the corresponding Sobolev space

(2-18) L^-TT^^^PW^.

Here the Fourier transform is considered in the distributional sense, gene-
rally speaking. If it does not cause misunderstanding, we denote the Sobolev
space by L^ or, if a = 0, simply by L2.

It should be mentioned (see for example [19]), that if a function /
satisfies the Lipschitz condition with exponent /3 > 0 on [-TT.TT], then
f e ̂ ^(-^Tr), say.

In Section 6 we study 7^-summability of the series (2.11).

THEOREM 7. — Let {^J e Bo. Then, for almost all uj e ^, the
following statement holds:

If a sequence K = {Rk} satisfies condition (2.13) with Rk instead of
x for each k e Z, then (2.11) is K-summable in ̂ (-TT, 71-) for each function
f C ^(-TT, 7r) for some a(= a(/)) > 0.

The following statement on reconstruction of bandlimited signals is,
in essence, a combination of Theorems 5-7.



210 G. CHISTYAKOV, Yu. LYUBARSKII

THEOREM 8. — Let {^n} ^ BQ. Then, for almost all uj € fl,, the
following statements hold:

a. The function S^(X)(1 + |A|)-1 e L^-Tr,^);

b. If a sequence 7^ = {Rk} satisfies condition (2.13) with Rk instead
ofx for each k C Z, then

<2-1" '̂M^^^ f̂"))̂ ,̂ ^

for each function F € PW^a with some a(= a(F)) > 0. .Here lim is
considered in the L^R) -sense.

Remark. — Here expression (2.19) is written for the case when all
points {\n} are distinct. In the case when some of them coincide, one should
consider the Lagrange-Hermite interpolation series instead of (2.19). [See
details in Sec.6.]

e. The last theorem (see Sect. 7) describes the local convergence
properties of (2.11). For each / € ^(—TT.TT) denote

(2.20) a fcC^ 1 - / 1 f(x)exp(-ikx)dt
27T 7-7r

and

5(/;A,r)(rc)= ^ Tak(f)exp(ikx).
R<^k<T

THEOREM 9. — Let {^n} ^ BQ. Then, for almost all a; e ^, the
following- statement holds:

For each function f € L^—Tr,?!-) there exists a sequence 7^(=
7?.(/,o;)) = {-Rfc}, Rk —^ ±00, as k —> ±00 satisfying condition (2.13)
with Rk instead x for each k € Z and such that

N Pn-1
S(f',R-M,RN-^i)(x)- ^ ^ ^ c^(cj;/)^exp(zAn(o;)a;) -^ 0,

fc=-MAnGJfc 1=0

(2.21) M.N-^oo

for each x C (—TT, 7r).

Remark. — The proofs of Theorems 7-9 will show that for each
particular choice of the sequence A, these theorems can be strengthenen to
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some (depending on A) extent. If say, A = Z, one can replace the condition
{$n} e Bo by {^J e Ba,^ with 07 < 1/2. So in this case the statement of
Theorems 7-9 holds for a sequence of independent perturbations, having
Poisson-type distributions with sufficiently small parameters.

f. Question: How far can be strengthenen Theorems 3-9 in the whole
class of sequences A which generate exponential Riesz bases in ^(-TT, TI-) ?

3. Preliminary results.

In subsections a and b we formulate preliminary results on exponen-
tial systems in L^-Tr,?!-) and related theorems on e.f.e.t.

a. Recall that the exponential system £(A) is a Riesz basis in
^(—Tr,?!-) if each function / € L^—Tr.Tr) admits a unique representation

(3.1) f(t)=^Ckexp{i\kt),

convergent in L2 (—TT , 7r)-noTm and satisfying

w EM ÎI.̂ -^)-
Here and in what follows the sign ^< means that the ratio of the lefthand
and righthand sides lies between two positive constants.

In this case we say that the sequence A possesses the Riesz basis
property (or, briefly, A is a Riesz basis sequence).

In order to get a criterion for a sequence A C M to possess the Riesz
basis property we need the following definition.

DEFINITION ([20]). — A non-negative function w(x), x e R satisGes
the Helson-Szego condition (briefly w C (HS)) if there are real-valued
functions u,v e L°°(R) such that

7T
(3.3) IML-W < 3

and

(3.4) w(x) = exp(u(x) + Uv{x)), x € M.

Here Uv denotes the Hilbert transform ofve L°°(]R):

^)4v.p./_^((){^+^},ft.
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THEOREM A ([5]). — For a sequence A = {\k} C M to be a Riesz
basis sequence it is necessary and sufficient that

1.

(3.5) d= inf \\k - Ami > 0;
k^-m

2. the limit

(3.6) 5(A)= lim H f1-^-)
^I^K^ A^

exists uniformly on each compact set in C, represents an e.f.e.t.TT. and
3.

(3.7) \S(x-^i)\2 e(HS).

One can describe the Riesz basis property of the sequence A in terms
of the space PW^. Following [21] we say that a sequence M = {/x^} C R is
interpolating in PW^, if for each sequence {o^} C I2 there exists a function
F C PT^TT solving the interpolation problem

(3.8) F(/^)=afe, f c = 0 , ± l , = ± = 2 , . . . .

The sequence M is sampling in PWjr if

(3.9) 1|{P(^)}||^ x ||F||p ,̂ F C PH..

Simple duality reasoning (see e.g. [6]) yields the following statement:

PROPOSITION 3.1. — For the system f(A) = {exp(i\kt)} to be a
Riesz basis in L^—Tr, TI") it is be necessary and sufficient that the sequence
A is both sampling and interpolating in PW^. In this case the interpolation
problem (3.8) has a unique solution. This solution admits the representation

("») W-^sw^-W
the series converges with respect to the PW^-norm.

b. We need some additional definitions.

If F C M and a > 0 are given, we denote Fa = {x e R : dist(a;, F) <
a}. For F, G C R we set

p(F, G) = mf{a : F C Ga and G C Fa}.
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Following [21] we say that a sequence of sets {Fn} approaches a set
F € M weakly ( denoted Fn -^ F), if for any compact set K C R
p(Fn Ft K,F D K) —> 0, as n —>• oo. One can assure (see, say, [21]) that
the family of sets {F +1}^^ is relatively compact in the topology of weak
convergence. Denote its weak closure by W{F).

Now let M = {^k} € M be a separated sequence.

THEOREM B. — If M is a Riesz basis sequence, then each sequence
from W(M) also possesses the Riesz basis property.

This theorem involves ideas from seminal articles [21], [22] and may
be proved in the same pattern. In these articles the more complicated
case of the non-Hilbertian norm || • HL°° was considered, see also [23] for
modification of this reasoning for the Hilbertian case (different from PW^).
In the present setting one can also give a direct proof of this fact.

COROLLARY. — Assume the sequence A = {\n} to be increasing.
Then

(3.11) A := sup{An+i - An} < oo.

Proof. — Let the contrary be true, i.e. there exists a sequence {ki}

such that \ki+i - ^ki —^ co as I —> oo. Then ( A - _ (Xki+i + A ^ ) ) -^ 0
which contradicts Theorem B.

c. Properties of the class (HS).

THEOREM C (see [20], [24]). — Let a measurable function w(x) ^ 0,
x € R be given. The following statements are equivalent:

a. w G (HS)',
b. w satisfies the A'2-Muckenhoupt condition (briefly w C (A^)):

w TU^^/^}^'
where supremum is taken over all intervals.

c. For any bounded finite function f we have

/oo /»oo
(3.13) \f(x)\2w{x)dx^Const \ \f(x)\2w(x)dx,

-00 J —00



214 G. CHISTYAKOV, Yu. LYUBARSKII

where Const does not depend on f. Here f denotes the usual Hilbert
transform:

^-^•L^-
We also need the following propositions.

PROPOSITION 3.2. — Let w C (HS). Then, for some /?o (depending on
w) we have (1 + \x\)^w(x) e (HS) for all (3 e (0,/?o).

Proof. — Consider representation (3.4) of the function w and
take some f3o e (0,7r/2 - |H|oo). Denote a(t) = sign(t). Clearly,
w(x)exp(±l3a(x)) e (HS) for any /?, 0 ^ /3 ^ /3o. On the other hand
direct calculation shows that exp(±(3a(x)) ̂  (1 + la-l)^, x € R.

PROPOSITION 3.3. —Ifw e(HS), then w~1 e(HS).
Obvious.

PROPOSITION 3.4. — Let w e(HS). Then

r ^ ̂ . ̂jj —<. ^dx < oo.
1 +rc2

This statement follows from (3.13) if one takes f(t) = l+sign(l -t2),
say, and mention that \f(x)\ x (1 + |^|)~1, x —> ±00.

d. To prove the completeness theorem below we need a bound for
e.f.e.t. satisfying (3.7).

LEMMA 3.1. — Let S(X) be an e.f.e.t. TT satisfying (3.7). Then there
exists a number j3 > 0 such that

(3.14) \S(irj)\ ̂  Const \r]\-^ exp(7r|77|), [77! > 1.

Proof. — Suppose, for simplicity, Q?A > 0 and take f3 > 0 so that b2 G
(HS), where b(x) = \x + i\-^\S(x)\. The function (A + z)-^(A)exp(z7rA)
is of bounded characteristic in the upper half-plane C4'. Therefore one can
factorize it as

(A + i^SW = Const exp(P&(A)) exp(-zTrA), A € C^

where, as usual, (see e.g. [25])

^^{^-S^T}10 x̂)dx.
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(The singular factor does not appear in this factorization since the function
(A + ^)~(3S(X) admits an analytic continuation through the real line, (see
[26], Theorem 6.2)). Hence

—— = Const (A + i)-^ exp(-P6(A)) exp(zTrA), A € C4-
6 (A)

and in order to obtain the estimate

——— ^ Const |7^-^exp(-7r|77|), \r]\ > 1,
\S(zrj)\

which is equivalent to the desired estimate (3.14), it now suffices to prove

(3.15) |exp(-P&(^))|^H1/2, H>1.

The standard estimates of the Poisson integral (see e.g. [27]) show
that the function H(\) = exp(-P&(A)) possesses zero exponential type
in C"^. Since b~2 €(HS), we can apply Proposition 3.4 to claim that
\(x 4- z)"^^)! x ((1 + \x\)b(x))-1) C L2(R). Applying a Phragmen-
Lindelof type theorem for Z^-norm (see e.g. [27]) we obtain that (A +
i)~lH{\) C H2^) and, in particular

ry+1 [ H{Q dC
^^-^k^^i-

Now the Cauchy-Bunyakovskii inequality yields (3.15).
e. In this section we present the results from probability theory that

we need for our constructions. We refer to [28] for complete proofs and
comments.

By P we denote a probability measure on a given probability space.
If $ is a random variable, E($) denotes the expectation of $ and D(^) its
variance.

THEOREM D (Chebyshev inequality). — Let $ be a real-valued
random variable and f(x) be a non-decreasing positive continuous function.
Then, for each a > 0,

(3.16) ni^^35^^.

THEOREM E (Borel-Cantelli lemma). — Let Ai , . . . ,An, . . . be a
00 00

sequence of events from a probability space and B = H (J An.
k=l n=k
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1. Jf^P(A^) < oo, then P(5) = 0;

2. If the events An are independent and ^P(A^) = oo, then
P(B) = 1.

THEOREM F (On two series). — Let ̂  be a sequence of real-valued
independent random variables. In order for the series ̂ ^ to converge
for almost all uj e ^ it suffices that both numerical series ^E(^) and
Y,D(^n) converge.

THEOREM G (Kolmogorov law of large numbers). — Let ^n be
independent random variables with finite second moments and {bn} be a
sequence of positive numbers, bn / oo such that J^D(^n)bn2 < oo. Then

Q __ Tiy/ Q \

n v n/ -^ 0 for almost all uj e ̂ ,

here Sn = E ̂
k=l

THEOREM H ([29], [30] and also [31]). — Let $1,... ^ be a sequence
of independent random variables such that E(^) =0, & = ! , . . . n. For
p ^ 2 denote

M^=^E(i^n.
fc=l

Then

E(|$i + 6 + ... + ̂ H ^ c(Mp^ + (M2,n)^2),

here the constant c(= c(p)) is independent ofn.

f. In the remained items of this section we prove Theorem 1, which
being a (simple) negative statement is considered as a preliminary result.

Thus until the end of this section we suppose that the variables $n
have continuous distribution densities pn(t) satisfying (2.1).

Then up to some translation and 6-shivering, we can imitate any finite
pattern by points from A^:

LEMMA 3.2. — Let e > 0 and a finite number of intervals {Ij}^, Ij =
(a^, a^ +e) of length e be given (they need not be disjoint). Let T > 0. Then
for almost all uj e ^, there exists a number t > T and pairwise distinct
indices HI, n^... , n^ such that \n, (^) C Ij + tj = 1,2,... N.
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Proof. — Let A be the quantity from relation (3.11). Take M > 0
N

so that the set \JIj is contained in an interval of length M. Now take
i

L > 2M + 37VA and consider the translations {Ij -4- kL}^ k = 0,1,... of
the original set of intervals. For each k choose the pairwise distinct indices

( N \
n^\ n^,..., n^ to minimize the distance p \J(Ij + fcL), {X^w}^).

Denote by Ak the events Afc == {a; : A^) (a;) € Ij + fcL,j = 1,2,. . . , N}.
Since the sets {Jj -\-kL}^^ are fairly distant for various values of k the sets
of indices {n^}1^-^ are disjoint and, hence, the events Ak are independent.

( N \
Besides relation (3.11) provides p \J (Ij + kL),{\^k)}^ ) < Const

uniformly with respect to k. The latter with of (2.1) yields inffc P(Afc) > 0.
Now it remains to apply the Borel-Cantelli lemma: infinitely many events
Ak hold.

We are now in a position to verify statement a. of the theorem: it
suffices to take Ij = (a, a + e) for all j = 1,2,... , N. Then, for almost all
uj € ^2, there exist ^ > 0 and pairwise distinct indices 77,1,722? • • • ?^v such
that \nj e (a + t, a + ^ + e), j = 1,2,... , N. This means we will observe
TV-bunches of closed exponents from the set A^. In particular fo/(A) does
not form a Riesz basis in ^(—TT.TT).

g. In order to prove statement bS^ we mention that a set of exponen-
tials {exp(^nt)} forms a Riesz basis in the closure of its own linear span
in L^—Tr, TI-) iff there exist constants (7, c > 0 such that

c||{Cn}||^ ^ ||^CneXp(z/U)||L2(-7r,7r) ^ C'l|{Cn}ll^

for any finite sequence {c^}. For each (either finite or infinite) sequence
p, = {^} e R we denote

(3.17) W = sup { ,_,——^fc}"-———— I,{c^ lllEcfcexp(iA(fct)||i,2(_^)J

where sup is taken over all finite sequences {en}. Thus we need to extract
a separated subsequence {Arn,(^)} so that

(3.18) C'({A^)}) = (X).

(1) The proof below was suggested by A.M. Olevskii and is published here according to
his kind permission. The authors' original proof was more complicated.
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The latter is straightforward if we combine Lemma 3.2 with the following
propositions.

PROPOSITION 3.5. — For any C > 0 there exists a finite sequence
^ = {/^}f, N = N(C) such that inf |/^ - in\ > 1/4 and C{^) > C.

k^pl

PROPOSITION 3.6. — For any N e Z4' the mapping p, = {/^Jf ^
C(p) is a continuous mapping from R^ into R.

PROPOSITION 3.7. — For any t € R,/A == {/^}f denote ^ + t =
{^k + Of. Then G(^) = C(^ +1).

After these propositions have been proved it remains to apply a direct
diagonalization procedure to construct, for almost all uj € n, a separated
subsequence {An^o;)} C A^ satisfying (3.18).

h. Propositions 3.6 and 3.7 are straightforward. In order to verify
Proposition 3.5 it suffices to construct a collection of infinite sequences
fjiW == {/4; }?° which still possess the Riesz basis property and also
C(/^) / oo as a / 1/4 (in the next lines we shall see that 1/4 is the most
convenient choice of the critical value) and then take finite truncations of
the sequences //°^.

Below is an example of such a collection.
For a € (0,1) denote

^ = k - a sign k,k e Z; SaW = A lim TT f l - A ) .
R^•L±\ ^ )

A direct estimate based on the Stirling formula gives

(3.19) \S^{x + z)| x (1 + \x\)2a, xeR

uniformly with respect to a.

Therefore the exponential system {exp^^t)} is complete and min-
imal in ^(-TT.TT) for a € (0,1/4) (actually if one applies Theorem A one
can readily verify it forms a Riesz basis) and one may obtain its biorthog-
onal system hk,a(t) from the relations

/•̂ (.A.)̂ - ̂ ^ - F..W.

Relation (3.19) immediately yields (it suffices to estimate the Z^-norm of
the function F^(A) on a horizontal line) that \\hk,a(t)\\L2^^) -^ oo, as
a —>• 1/4, which is equivalent to (3.18).
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4. Completeness of exponential systems
with random exponents.

In this section we prove Theorems 2-5.

a. The proof of Theorem 2 consists of several steps:

First, let us switch to truncated random variables. For a fixed e €
(0,1) (value to be specified later) consider the random variables

f$n, if|$n|^|Aj;
(4.1) $: = . . .

^ 0, otherwise.

LEMMA 4.1. — For almost all u} € ^ the following relation holds:

#{n: W + W} < oo.

Proof. — We use condition (2.3). The Chebyshev inequality yields:

P(̂  ^$:) =ni$ni > ̂ IAJ) < J°̂ ^ ^ ̂ ,.
Relation (3.5) gives ̂  lAnI"^^ < oo. So EP^n 7^ 0 < oo, and by the

n
Borel-Cantelli lemma we have

pfn u^^})^
^k=0 \n\>k /

which is equivalent to the statement of the lemma.

Denote A^(^) = \n + G^)- since we assumed 0 ^ A, we have
X^) ^ 0 , n € Z , uj € ^.

COROLLARY 1. — The product 5o/(A) defined in (2.4) and the product

(4.2) s;w^nj'-^))
are simultaneously convergent (or divergent) for almost all uj G fl. and, if
convergent, represent entire functions of the same exponential type.

When proving Theorem 3 we will consider the cases 5 = 0 and 6 > 0
simultaneously. In order to compactify the formulae we introduce the switch
ss: in what follows we assume sg = 0 for 6 > 0 and sg = 1 for 6=0.
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COROLLARY 2. — For almost all uj € 0 estimates (2.7) and (2.9) are
equivalent to
(4.3)

cexp(-^log(|l+|^|))3/4) < IjJ^ < Cexp(^(log(|l+M))3/4), r y e R .

b. Convergence of random series. I.

LEMMA 4.2. — The following statement is valid:

(4.4) ^ lA^r^i)! "̂  °° for ajmost aJJ ̂  e "•

Proof. — This follows immediately from the convergence of the series

^ E(|q|) ^ E((g:)2) ^ e|AJE(|^|)
^ (|AJ + 1|)2 ^ (|AJ + i|)4 < 1. (|^| + i|)4

and Theorem F on two series.

c. Convergence and an estimate of the canonical product. Denote n^ (r)
#{n : |A^)| < r}. Since |̂ | ^ e|An|, we have

??* (r}
limsup-^ ^ 1+e.

r—^oo y

Therefore (see for example [32]) the canonical product

w)-n(i-^)-p^
converges uniformly on each compact set in C and the function Mp* (r) :=
max{|F^(A)|; |A| < r} admits the estimate:

(4.5) logM^(r) ^ r ̂  — + 0(r).
M^r An

Since |5|2 e(HS), Proposition 3.4 yields 5(A)(A - Ao)-1 C L^R) and,
hence, (see e.g. [32])

(4.6) the limit Ao = lim A(r), where A(r) = V^ — exists.
r^00 |An|^r n
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This allows one to improve the convergence in the first term in the right-
hand side of (4.5). We have

E ^= E ^+ E ^=^)+iw,
W^r n IAJ^Y^ n |A^r;|An|>^ n

where

\w\^ E î ri ^i— E in
^<|A.|^r(l+6) 1 nl ^<|AnKr(l+6) ' nl

2 v^ 1 ^^ -^———r > - ^ Const.
d(l - e) z^ fc

^<fc^r(l+e)

Here d is the constant which participates in the separateness condition
(3.5).

Further

^-(iT^J^-^I^-jA
l^nl^yq^ l^nl^Tq^

Now relations (4.6), (4.4) imply

sup|Bi(r)| < oo,
r

and by inequality (4.5) we obtain log Mp^ (r) < C^r for almost all uj C ^.
Thus F^(X) is an entire function of exponential type, the latter depends on
{jj € ^2, generally speaking.

d. Convergence of random series. II.

To estimate the generating function for the sequence {A^(c^)} we need
the following lemma.

LEMMA 4.3. — The following statement holds:

Y- ^M ^ ̂  {^ ̂ ^ ^^ ^ Q

^ ̂ )

Proof. — One can obtain the conclusion of the lemma by the theorem
on two series if using (2.3) and noting that

^E(^)2)) ^mnW^Wn\)1-6

\ A ^ + i ^ — — x r n < 0 0
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and
^ E(w4) ^ ̂ wm2)
2^ ^ 2 , n 2 ^ e 2^ (\2 , 1 1 2 < °°-(A^+l)2 "' ̂  (^+1)2

e. Properties of the generating function.

LEMMA 4.4. — For almost all uj € f^ the product «%(A) defined
by relation (4.2) converges uniformly on each compact set in C to an
entire function of exponential type TT + Ce, where the constant C > 0
is independent of e. In addition the following relation holds for each fixed
(9^0,7T:

<4-7) r̂̂ lSÎ
for sufficiently small e > 0 with some C(0) 6 (0, oo) independent of e.

Proof. — We have

^w^nJ'-^M^)
|An|<^t

.̂̂ w}.xp {-. E, ̂ } nji - ̂ ) •
^ |An|<rt ^ \An\<rC

It follows from Lemma 4.2 and relation (4.6) that, for almost all uj € 0,
the limit

w -̂oo n C-A^))
|An|<fi v nv / /

exists and, along with -F^(A), is an entire function of exponential type.

To evaluate this type we compare the function %(A) with the
unperturbed function S(\) in the angle D^ = {A = x + iy : \x\ < 7|t/|},
where 7 > 0 is a fixed number. We have

^^Jl^'
where

^-^^-ir-^m-
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Since A € D^, we have

A- a(lt;) ^ e Const < 1 n=0,±l,±2,...
An - A A^(u) 2

for sufficiently small e. Therefore

223

A W A $n(^)IWUA)-^^^ < Const ̂ ^

Since < Const for A € -D-y, Lemma 4.3 yields
A n - A

(4.9) EIO^UA)I-^E^|^ ^- A e^^ " "n

and (since A = a; + ̂ )

^E A $:(̂ )
An - A A^(o;) <E ^(a>) (An - a;)a; - y2

X^) (An - x}2 + y2

<C'i E w + E
|An|<27l»l Ai!l^ |A..|^|2/|

c^) X
An(^) |An|

(4.10) ^ ^1+H E )̂
|AJ>27|3/|

Since series (4.4) converges, the last summand in the rightmost inequality
does not exceed e\y\ for all sufficiently large \y\ (depending on ^ € Q.).

Therefore, combining relations (4.9), (4.10), we obtain, for almost all
uj e 0,

(4.11) ^log|G^(A)| ^ CM X = x+iy G D^, |i/| > 2/(e,o;),

where the constant C'3 is independent of e.
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Turning our attention to (4.8) and using the estimate |5'(A)
(1 + [A))"1! < Const exp(7r|^/|), which follows, say, from the inclusion S(x)
(l+I^D-^L^weget

|%(A)| ^ Const exp{(7r+C4e)H}, A € D^,\y\ > y{e^).

The quantity C^{= ^4(7)) as well as C3(= €73(7)) above is independent of
e. Now the Phragmen-Lindelof theorem makes this estimate uniform with
respect to 7:

|%(A)| ^ Const exp{(7r + C^e)\y\}

in the whole complex plane, i.e. «%(A) is an entire function of exponential
type no greater than TT+CSC. Now (4.7) follows from (4.9) and (4.10). This
completes the proof of Lemma 4.4.

Since, for any e > 0, the functions S(\) and 5o;(A) differ at most by
a finite number of factors, Theorem 2 follows at once from Lemma 4.4.

Remark. — Close reasoning shows that condition (2.3) can be weak-
ened. In particular, if all independent random variables ^n have the same
distribution it suffices to demand E(|^o|) < oo.

f. To prove Theorem 3 which delivers the exact estimates (2.7), (2.9)
on the imaginary axis we need exact bounds for the sum of a random series.

Taking into account relations (4.8) and (4.9) we see that Theorem 3
follows from

LEMMA 4.5. — Under the hypothesis of Theorem 3 the inequality

sp\^_ijL-^M V V2 C(^) ^ r -L. c (}^c\ -L i./m3/4^A——^^7^ = 2^A2-T^^T^ ^+^(log(l+M))/ ,
n • " ^ n\ / \ \ n\n-iy\M\ p-A^+^A^)

y 6 M, holds for almost all uj € ^ with some C^ € (0, oo) (we recall that
ss = 0, if 6 > 0 and ss = 1, if 6 == Q).

Proof. — Set

«.") E^^- E + E —^
„ n-ry ^nW |^|<|y|+l |A^|>|y|+l

and estimate each summand separately.
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We have

V^ C^) _ V-^ A^ ^ (1) _ (2)'^i«w lJh;l..(A^''2)(A••+«)~•' " •
g. The quantity a^ 7 is a partial sum of the series

v —en- = v (^- - —^2— \
^A^^ ^{Xn A,(A,+^)Y5

whose sum is independent of y. That the series ZXGO^An^n + Gi))~1

converges is in the main proved in Lemma 4.3.

According to the Borel-Cantelli lemma convergence of the series
S ̂ (An)~1 ls equivalent to convergence of the series ̂  ̂ n{^n)~1^ which in
turn can be obtain by applying the theorem on two series: ̂  E(^n)(^n)~1 is
convergent because E($n) =0, n C Z and, obviously, SE(0(A^)~1 < oo.
Thus

(4.13) sup |cr^[ < oo for almost all uj € Q,.
y

The quantity a^ admits the estimate

i^Krhv E i&
1171 |An|^|+l

Apply the law of large numbers (Theorem G) to the random variables
{|^|}. Together with the inequality n^(\y\ + 1) ^ Const \y\ (the value
n^(-) was defined in the beginning of n°. c) this yields

(4.14) sup |cr^| < oo for almost all u C f2,
y

and taking (4.13) into account we obtain

(4.15) sup \(jy\ < oo for almost all uj € ^2.
y

h. The remainder term Ry in (4.12) consists of two parts:
(4.16)

Bt= Ll.xiSd.K./I.̂ ^J A/+"2 ̂ f1-" =a?)+<"'
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We use the rough estimate

y2 W ^
A^+^A^+a^) " A^

for \\n\ > (\y\ + I)2, whence
(4.17)

W^V2 E A,2 ^ Const./2 ^ ——=0(1^ ^oo.
|An|Xh/|+l)2 fcd>(|2/|+l)2 rc d

Here, as earlier, d is the constant from (3.5).

Standard (now) arguments show that instead of estimating R^ one
may consider
(4.18)

r^=( E + F } y2 ^--r^r-\ 2— ^ I A2 + ?/2 \ ~ ' y " y •\l+|2/|<An^(|2/|+l)2 l+|^|<_A,^(|^|+l)2y ^n^V ^n

We shall prove that

(4.19) sup|r^|<oo,
y

one can obtain the estimate of 7- in a similar way.

i. In order to obtain (4.19) we apply Theorem H. For definiteness, let
y > 0. Consider the set of indices

Ny = {n : 1 + y < \n ^ (1 + y)2} = {ny,ny + 1,... ,Uy + ky}

and represent the value r^ in the form

r^^-E^^+^-E^)))...

, . + (^-D _ E^71.-1))) + ̂  E(C^),
fc=o

where

^(A;) ^ Y^ y2 Qny+k

ZeN;Zn^(l+|3/|)2-fc ^n^A^^2 Azn^+fc

Now apply Theorem H twice, first for the random values

(4.20) Xi = , y2 g^+fe-^^+fc)
A^+2/2 A^, ? ^ - 1 , 2 , . . . ,
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for each k = 0,1,... ,riy - 1, and then for random values Q - E(Q )),
fc = 0,1,... ,Uy - 1.

First we mention that, by (3.5),

(4.21) \m ̂  rnd

and also (since Ann"1 -^ 1 as n —> oo (see e.g. [32])), we have

(4.22) ^<2/<2n,/

for all sufficiently large y.

Therefore

lEr î < V y2 l̂̂ 0
\^y )\ ̂  2^ cP(lny + fc)2 + y2 d{lny + k)

(4.23) < Const f^ ̂ -E(|^+fc|) < c^
Z=l y y

and, hence,

(4.24) IE^I^^IE^)]^ Const.
k=0

j. In this item we consider the cases when (2.6) holds, and, when only
(2.8) holds, simultaneously. Therefore below we set either v = 6 or v = 0
depending on what case takes place. Applying Theorem H to sequence
(4.20) we have

Edc^-HC^)!2^)^y ^\^y

<

2+v
^( y2 \ ^E(|^^-E(^^)|2^)

^^A^^y2) \>in^\2^

1+^/2-|

^ ( y2 \2 E(l^+fc-E(^4-fe)12)
^{^k^y2) ^k

Applying the inequalities

Wn^k - E(^.+J)2) ^ E((^+J2) ^ Const;
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mw^n^k)\2^) ̂  22+I/(E(|^+fe|2+l/)+|E(^^)[2+I/) ^ Const

and also inequalities (4.21), (4.22) we obtain

' oo ^ ^2 \ 2+l/

^2

oo / 2 \ w l v -i^-Ew^constlE^) (̂
J^f-'^-}2—}1"'" <comt-\a^(i"2.+»2-' c"')^ " ''w'

Similar reasoning yields

EdC^-E^)!2)^0118'^ -VSy /I ) ^ ^2 •

Applying Theorem H to the random variable r^ — E(r+) we obtain

E(I^-EWI-) <Co^ (^ + (^w2) , (^.
\ ̂  \ l vy / ) ^y

k. Consider the events Am = {|^-E(r^)[ > l+5<$(logm)3/4}, m =
1,2,... The Chebyshev inequality yields

E(|r^-E(^)|2^) Const
{ m ) ^ (l+^^logm)3/4)^ " ^(l+logm))3^'

Since ^P(A^) < oo almost everywhere, only a finite number of events
Am hold and, taking into account (4.24), we obtain

limsup|r^| < oo

for almost all uj € ^.

So we have estimated the quantities r4". for y 6 Z-(-. To obtain the
desired relation (4.19) for all y one should mention that, for t G (0,1),

!,+_,+ i_ Y- / m2 (m^t)2 \W
rm m+d .^^^A^+^2 ^+(m+t)^ A.l+m<An^(l+Tn)2

1^(^)1^ Const ̂  ls^

and again apply Lemma 4.3. Boiling together (4.19), (4.17), (4.16), (4.15)
we obtain the statement of Lemma 4.5 and thus Theorem 3.
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1. Proof of the completeness theorem (Theorem 4). Suppose
that the system £^ is not complete in Z/^—Tr,?!-). Then there exists a
function / C L^—Tr,?!-), / -^ 0 which annihilates it, i.e. the function
F € PW^ defined by the relation

(4.25) F(X) = ( exp(i\t)f(t)dt
J—7T

vanishes on A^. The relation

tW-^" s^m
defines an entire function <I> also of exponential type.

Denote by /i$(0),/^(0),/i5-(0),/i5^(0) and I ^ ^ I F ^ I S ^ I S ^ the indica-
tor functions and indicator diagrams of the entire functions <1>, F, 5, S^ re-
spectively. (For definitions and properties of indicator functions, indicator
diagrams as well as other related properties of entire functions of exponen-
tial type see e.g. [32]).

We have

log|F(rexp(2<9)|(4.26) hp(0) = limsup ̂ l^-^l ^ ^| ̂ [.
r—»-oo y*

Since (1 + la;!)"1^'^) 6 ^(M), S with real zeroes, we also have

- _ ,. log|5(rexp(z0)| .
hs{0) = hmsup ———-—- = 7r| sin0|

r—»-c»o f

and, in addition, one can replace lim sup in the later relation by lim for all
0 ̂  0, TT. Now, by (2.5) we obtain that, for 0 -^ 0, TT, there exists the limit

. , - - , . , /„ . ,. \og\S^(rexp(i0)\ . . -,(4.27) hs^(0)= lim 01 v——-——i =7r|sin(9|.
r—>oo T

Applying the Cauchy-Bunyakovski inequality to (4.25) we see

?7)! ̂ -'^(TTH), H>i,

and combining this estimate with (2.9),(3.14), we have

(4.28) <I>(z77) = OaTT^2)^! - ±oo,
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which in particular implies that h<s> ( ± 7-} =0 , i.e. 1^ coincides with a
segment [a, b] G R and

f6cos<9, |(9|^7r/2
M<9)

[-a cos (9, \6\ e [7r/2,7r].

We claim a = & = 0. Indeed, if, say, b > 0, then we have

/^) = limsup log|^exp(^(exp(^))| ^ ,̂ ^ ̂  ,|̂
r—»-oo T

for (9 € (0,7r/2). This contradicts (4.26).

Thus <I> is an entire function of zero exponential type and, according to
(4.28), decays along the imaginary axis. By the Phragmen-Lindelof theorem
(see e.g. [27]) we obtain ̂  = 0 and, finally / = 0, which completes the proof
of the theorem.

m. Minimality of the system £o/(A) (Proof of Theorem 5). In view
of Theorem 4 we need to prove the minimality only. Using (1.1),(2.10) for
k = 2 and the theorem on two series (which grants convergence) we see

W)
T TT An ' Sn — A^n^i^ , _ ^

S(\)
\̂n

^iW^i+g)
The denominator does not depend on A, thus consider

w = n An + ̂ n - A

A n - A =11 )̂'
\=x+i "

where

y (x} - 14- 2(A»-a;)^+^
nw-l+ 1+ (A^-^)2 •

Let m e Z,m > 0 (its value will be determined later). Using
independence of the random variables ̂  and also the Fatou lemma we
have

N
E^x)) < l^fnE((^(a;))"1)

—N
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and (with account (1.1) and then (2.10))

W^))')-1^!^^

. f -C-E^^-^^^V^llCfm) 1
+2^1^ l+(A.-^ JJ^+^^A,-^

whence (with account of (3.5)) E^W^x)) < Ci(m), the constants C(m), Ci(m)
are independent of x.

Now the Chebyshev inequality yields ¥(Tl[x) > \x\'2a) < C^m)^-2^
for any a > 0, x € M. In particular, if 2am > 1 we have ̂  P(H(kh) >

k
(l^l/i)201) < oo for any h > 0 and, by the Borel-Cantelli lemma, for almost
all uj € ^l the inequality

(4.29) H(kh) ̂  (1^)2°

holds for all but a finite number values of k.

By the M. Cartwright-type inequality for the integral norms (see for
example [33]) we have, if h < 1

.430) F l^^l^y-l^)!2
^ L, (l+^d^A.(l+^
in the class of all e.f.e.t.Tr for each f3 > 0. To complete the proof it remains
to choose the proper values of all the parameters in the case. By Proposition
3.2 there exists a > 0 such that f \S(x + ̂ (l + x^-^^dx < oo and,
hence, EI^C^)!2^ + k2)-^^ < oo for each h € (0,1). With this a,
taking m G Z to satisfy 2am > 1 and using (4.29) we get ̂  IS^fc/i)!2^ +
fc2)-1 < oo and, again by (4.30), f \S^(x + ̂ (l + x^dx < oo, for
almost all uj € fl,. This already yields the minimality of £^: the elements
of the biorthogonal system are the Fourier transforms of the functions
^(AKA-A^a;))-1^^).

Remark. — It follows from the proof that the statement of Theorem 5
is still valid if one demands fulfillment of the inequalities Ed^l^^oo?^^
Z only for a finite number k = 1 ,2, . . . , m, m depending upon S. Namely, if
/3o is the constant from Proposition 3.2, then one may take m > {/3o)~1, say.
In particularly, if log \S(x + i)\ is bounded, (this happens, say, for A = Z),
one can take m = 3.
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5. Estimates of entire functions with random
zeroes on a horizontal line.

In this section we prove Theorem 6 on estimates on a horizontal line
of entire functions with random real zeroes.

a. This (new) setting demands construction of truncated random variables
to be more precise if compared with the previous section.

Take an integer no > 0 (its value to be specified later) and denote

(5.1) tn = - log f - log |Anl) , n € Z, |n| > no;
7 \a )

2
(5.2) In = — log [An| + 27, n e Z, \n\ > no.

tn

We suppose no is chosen so that tn > 1, In > 2 for all |n| > no.
Now consider the random variables

^n, if|^n| «nand [n| > no;(5.3) e =
0, otherwise.

The Chebyshev inequality yields

m^nl > In) ̂  exp{-Un}E(exp{^|$n|}), |n| > no,

and now by (5.2) we have

P(|$n| > In) ̂  exp(ae7tn - Un)

= exp(log \\n\ - 21og |A,| - 21oglog |AJ + 21oga) ^ . const , .
lAnllog'lAn!

Using once more the fact that S(\){\ — \o)~1 € I/^R) we obtain (see e.g.
[32])

(5.4) AM -^ 1, as x -^ ±00.x
Therefore ^P(|$n| > In) < oo and by the Borel-Cantelli lemma we almost
surely have ̂  = ^n for all but a finite number of n's, the latter depends
on uj € f^.

So we replace the function 5o,(A) by

p., ,̂.̂  n(i-^g).
|Anl<-Tt
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Since {^n} ^ -Say-p we have

(5.6) E(|^|) ^ Cfc, k = 0,1,2, . . . , n G Z,

for a sequence {c^} independent of n. The Chebyshev inequality yields

(5.7) P(|$n|^)^ ̂  ^>0.
uC

Let Pn be the probability distribution of $„. Then

/" xdPn < U^nl ̂ ln)+ [ P(|$n| ̂  x)dx ^ ̂  + [ ^ dx < ̂  .
IzlXn -/in l" ^n a; l"

Since E($n) = 0, we obtain |E(^)| ^ 2c3^2. and, in particular

re)! . „(5.8) E < oo.
|A^

This inequality will be used when applying the theorem on two series.

b. We have

An+^-A

%(A)
^(A)

, n A « + ^ - A^niA^ ^ ^
lim riiA l < f l f l + ^"-)

fl-»oo ^"1^" \ An 7

Relations (5.8), (5.6) for k = 2, and the theorem on two series provide
for almost all uj € ^ the compactwise convergence of each product in the
right-hand side of this relation rather than simply convergence as mean
values. Besides, the denominator does not depend on A. Therefore to obtain
estimate (2.12) we restrict our attention to the products

(An+^-aQ '+ lAn+G-A | 2 -nn(:r)=
A n - A (An - X)2 + 1

2(An-aQq+(^)2 '
1 + (An - a;)2 .

\=x+i »

= n n n (i+
\ /-/^ )V l \ /-i^nr \ • /̂*.-i- )V N-\^x-N \\^-x\<N X^-H-x+N

(5.9)

only. Define

(5.10)

ni(a;)Il2(;>;)Il3(.r)

N = Nx = 8^]+i
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and study each factor for sufficiently large x, x > 0, say.
c. Estimate of the product Il2(a:).

First describe the behavior of the quantities in^n and N^. By (5.4)
we have

(5.11) tn= ^loglog|n|+0(l),

(5.12) ^=27^°^ +0(1),loglog|n| v n

(5.13) N^l^10^. ,+0(1).
'loglog|a;| v /

Now notice that the number of factors in Il2(a;) does not exceed 2 N / d ,
where d is the constant from (3.5). Since, for [An - x\ < N we, obviously,
have

1 < ( A n + C - ^ + l _ 2(An-:r)C+(C)2 2
1+A^ ^ (A,-^+l -1+ (A.-^+l ^ 1 ^ N '

Therefore for some absolute constant c and sufficiently large x

^-cd-^N^N ^ n^) ^ e^"^10^, N = 7v,.

It follows from relation (5.13), that there exists XQ = ^0(0,7) such that
Nx log Nx ^ 7 log x, x > XQ. Here as usually the sign x means that the
ratio of the both parts of the relation lies between two positive constants.

Taking into account this relation we obtain

(5.14) |rc|-^ ^ 112(0-) ^ M^, \x\ > xo(a^)

for a constant Co € (0, oo) independent of a, 7, and uj e fl,.
d. To estimate the products IIi(a;),n3(a;) we mention that relations

(5.12), (5.13) imply ln/\x - \n\ < 1/4 for \\n - x\ ̂  N^. Therefore, when
dealing with IIi(a;),Il3(a;), one can use the inequalities

2|An-^||C| (G)2 2ln ( In \2 3

(An-^+l l ( A n - r c ) 2 + l " \\^-x\ ' { x ^ - x ) " 4
and, hence,

(5.15) logll̂ )= S {2^:^+-^}+^l);

\n^X-N {An x ) (-An - x ) )
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(M6) iogn,(.)= E {2^-^+^}+o(l).
ATl^ai+^V

We have

\- _^)__^ Const ^ 7^^+E TT-^ = <71+(72-
J^ (A- - a;)2 .+A&.2. (A- - a;)2 A^ (A" - a;)2

Simple estimates show
;2

o-i ^ Const —!̂ — ^ Const l^x}^ atl ^ Const,N.

and finally

E^^onst^,.
A^^+W ^"

Similarly

(C)
S^ (A«-^ ^ const 'i^1

(5.17) loglli(a;)n3(a;)- 7" -2C2- = "(^ I^D' a; -'00-

and

——. - - An —— X
1^-o^N • 7l ~ x

e. Therefore it suffices to estimate the sum of the series

G(5.18) s-(x)= ^ .̂
|A.-.|^N An x

It is more convenient here to consider the sum

^n(5.19) s{x) = ^
\\^-x\^N xn x

this will alter only nonessential constants in our estimates.

We need the following auxiliary statement:

LEMMA 5.1. — There exist numbers e > 0 and c > 0 such that

(5.20) E(exp{r$n}) ^ exp{c|r|2} for |r[ < e, n = 0, ±1,....
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Proof. — This statement follows from (1.1) and the Taylor formula
applied to the functions ^(r) = E(exp(r^)). Here when estimating the
second derivative of (f)n(r) near zero we use the bounds from the definition
of the classes Bo,^.

Now split the series s(x) into two parts

s(x)= ^ + ^ =s^(x)+s-(x)
\n-x^.N Xn-x^-N

and confine ourselves to considering s^{x) only; the estimate of s~{x) is
similar.

In order to estimate the "tail" of the distribution function of the
random variable s^{x} we begin with the partial sum

^ = E ——
x^rN^X^M n

and evaluate its characteristic function. Since the random variables ̂  are
independent, we have

E(exp{^(a;)}) = II E f^P ̂ T^— I) - t > °-
x-^-N^X^M v l An - x J )

Fix an e satisfying the conditions of Lemma 5.1 and denote a =
min(;r + t / e , M). We have^2)

E(exp{^^^)}) = n n
x-^-N^Xn^a a<Xn^M

< n ^{^{^r—c}} n Efexp{^T-L-})•x+N^X^a ^ I A n - a - J J ̂ ^ \ f An - X J )

The number of factors in the first product does not exceed C-it, for some
C\ > 0; in order to estimate the factors in the second product one can use
(5.20). So

E(exp{te^)})^expLci*exp^UexpL2 ^ . . I
^ a<\n^M v n / J

^ ) Some of the factors below may be absent.
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and

E(exp{t5^(a;)}) ^ exp <jaCitexp { ̂  } + W .

Since the right-hand side is independent of M, we obtain

E(exp{^+(:r)}) ^ exp ^ aC^texp {—\+c2t\

and, similarly,

E(exp{-ts+(x)}) ^ exp ^ aCitexp ^ — ^ + C^ .

So, finally

(5.21) E(exp{t|5+(^)|}) ^ 2exp Ldtexp { ̂  } + <^l.

Next we estimate the values s^{m) for integer (and still positive) m's.
Denote Tm = ̂ /7, Qyn = 7logm + C'iae + £2, where Ci, (72, a are the
constant from relation (5.21), and consider the events Am = {^(m)] >
Qm}' The Chebyshev inequality yields

P(A^) ^ exp{-T^O^}E(exp{T^|s+(m)|})
^ 2exp{-TmQm + C^aerm + ̂ r^} = 2exp{-r^7logm}.

Since Tm —> oo, we have ^P(A^) < oo and by the Borel-Cantelli lemma,
for almost all uj € ^, only a finite number of events Am may happen, i.e.
almost surely

(5.22) ^(m)] ^7logm+Cio;e+C2

for all sufficiently large m.

For arbitrary u € (0,1) we now have

^"'-• '̂J^"^^" - ̂ "O
^J^-^----)^1'-

It is obvious that the right-hand side of this expression is bounded uni-
formly with respect to m and u.
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Therefore, almost everywhere with respect to uj and for all sufficiently
big x > 0 we have

\s^(x)\ ̂ 7 log x +€4(0;, 7,0;).

The bound for s~(x) is the same. By combining these estimates with
relation (5.17) we obtain statement a. of Theorem 6.

h. One can prove statement b. of the theorem (relation 2.14) in the
same pattern by taking into account the separateness condition (2.13).
That each segment [m.m+1], m large enough, contains points a;, satisfying
(2.13) (this is statement c. of the theorem) follows at once, if we mention
that the number of point from A^ in [m, m + 1] is o(log |m[) and also the
sets A^, and A^ differ only by a finite number of points.

6. Series expansions in random exponential systems.

a. In this section we assume {^} € Bo, in particulary the hypothesis
of Theorem 6 to be fulfilled. In this case the system ^(A) is complete
and minimal in Z^—Tr.Tr) (for almost all a; € f^) and to each function
/ € -^(—Tr,?!-), one can correspond the series

pfc-i
(6.1) / ~ E E c^ ̂ tl exp(^(^).

k 1=0

We describe the summability procedure for such series.

The coefficients of series (6.1) are

(6.2) Ck,i = t f(t)hk.i(t)dt,
J —TV

where

(6.3) ^={W^o;^z

is the system, biorthogonal to £^.

Following [13] we give the explicit expression for hk,i to make the
exposition self-contained. Let

r ( 1 \=^ ck'^
^{x-Xk^)} ^(X-XkW
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be the principal part of the Laurent expansion of the function [^(A)]"1

near the point \k{^)- Consider the entire functions

(a A\ tl f\\ ^W V^ ck,j+l(6.4) ^(A)=-^-^^_^^,

and notice that the Taylor expansions of the functions Hk,i have the form

H^X) = ̂ -y^)' {i + o^A - wr-1 + • • • } •
We have

nff(W)=8^k6i^ ^ f c € Z , Z=0 , l , . . . , p f c - l , m=0,l, . . . ,p,-l

and the relations

(6.5) h^(t) = F-\H^i}(t)

define the biorthogonal system T-i^.

b. We proceed to the proof of Theorem 7. By Proposition 3.2 we
can fix a number a > 0 such that the functions

(6.6) F±/3(^)=(l+M)^l^+z)|

still satisfy the condition

(6.7) \F^\2 e (HS)

for all (3 C (0, a). According to Theorem 6 for almost all uj € ^ the following
property holds:

for each (3 > 0 there exists a constant C^^ such that

(6.8) C^F.^x) < \S^{x + i)\ < C^Fp(x).

Everywhere below we assume uj satisfies this condition. We also assume that
0 < /3 < a, so the outer terms of inequality (6.8), being squared, belong to
(HS), in contrast to the intermediate one (otherwise £^(A) would form a
Riesz basis in ^(—TT.TT)).

c. Now take 7 < a/10, 7 > 0 and assume that / € L^ and the
sequence K = {Rn} satisfies (2.13) with Rn instead of x.



240 G. CHISTYAKOV, Yu. LYUBARSKII

Define the operator PM,N by the relation:

N pk-1

(6.9) PM,N : / ̂  E { E Eck^1 exp(^(a^)}.
-M Afc€Jn 1=0

One can read the statement of the theorem as

PM^ -^ L2) -^ Id(L2^ -^ L2), M, N -. ex),

here the notations in brackets mean that we consider operators acting from
L2 into L2 and Id denotes the embedding operator.

d. It suffices to prove the following statements.

LEMMA. 6.1. — The system £^ is complete in L2 .

LEMMA 6.2.. — The following relation holds:

(6.10) SUp{[|PM,N||L2-.L2} < 00.
M,N ^

Indeed, the sequence {PM N} approaches the embedding operator on
finite linear combinations of elements from ^(A) which, by Lemma 6.1
are dense in L2 Now Lemma 6.2 allows us to extend this relation to the
whole space L^.

Let us use the quasiscalar product:

(6.11) (/^)=(27r)-1 r f(t)g(t)dt.
J —7T

The spaces L2 and L2. are mutually conjugate with respect to this product
and the general form of a linear functional in L2 is as follows:

(6.12) Cf{g) = (27T)-1 I " f{t)g(t)dt, g € L^ f € L^.
J—7T

The proof of Lemma 6.1 repeats with a natural modification the proof
of the completeness Theorem 4. One can also prove it in a simpler way
involving exact estimates (2.12).

e. We split the proof of Lemma 6.2 into several steps. First, con-
sider the conjugate operator. Relations (6.4)-(6.8) together with Proposi-
tion 3.4 show that the biorthogonal system 7i^ belongs to L2.^ . For a
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function g € L2 denote

(6.13) bk,i = bk,i(g) = (27r)-1 f t1 exp(i\kt)g(t)dt, I € 0,pk - 1, k e Z
./—7T

and define an operator TM,N '' I 2 —> L2.^ by the relation

N pfe-1

(6.14) TM,N:/^ E { E Y^ bk,ihk,i{t)y
n=-M XkCin 1=0

The operator TM,N is conjugate to PM,N with respect to the quasiscalar
product (6.11). Therefore Lemma 6.2 is equivalent to

LEMMA 6.3. — The following relation holds:

SUp{||rM,N||L2^L2 } < 00.
M,N ~7

f. One can reformulate the later lemma as an interpolation problem.
Let a function g e L2 be given with bk,i as in (6.13). Denote G(A) = (^)(A)
(here G(A) means the extension of the Fourier transform from the real line
onto C) and consider the meromorphic function

(6-15) $(A)=^-
Denote by Tn the rectangle with vertices J?n±z, J?n+i±i. Direct calculation
(see e.g. [13]) shows that, for A ^ I\,

pfc-i pfc-i

^ E E ̂ ^(<)}w = E E ̂ iH^w
AkSin 1=0 AfceJn i=0

-w)- I W^2m J ^ ^ ^ - X '

Now set TM,N = ̂ TM,N^~1- For A ^ {|9A| < 1} we have
N i r dc

(6.16) TM,N : G(A) ̂  ̂ (A) E 27n / ^(c) F-X •
-M t/rTl '

The poles of the meromorphic function <I> coincide (accounting for
their multiplicities) with zeroes of S^ (A). Therefore the right-hand side of
the last relation represents an entire function and Lemma 6.3 is equivalent
to
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LEMMA 6.4. — The following relation holds:

Q^){\\TM,N\\PW^PW^ -^} < oo.
M.N

g. Proof of Lemma 6.4 — reduction to a problem in weighted
Hardy spaces.

When evaluating the norm in the space PW^^-^ one can integrate
along any horizontal line. Therefore to prove the lemma it suffices to obtain
the relation

r ° ° |5^+2z)|2 ^ r - dc 2 _
/ —r———PT— > / ^(0 -:—/ ^ x dx ^ Const,J_^ \x+2i\^ Z^ ^^-(a;4-2z)

where the constant is independent of G € PW^, \\G\\pw^^i-

In turn, it suffices to prove the relation

(6.17) r ̂ x+2f V: / W , ^ , 2 „ < Const,v ' 7-00 \x+2z^ ^J^ ^'<:-(x+2i)

which can be viewed as an estimate in a weighted Hardy space. To make
this reasoning clear we need the following notation.

Let a function a(a;) ^ 0, —oo < x < oo satisfy the condition

(6.18) f
J—(

^ga(^dx<oc.l-\-x2

Denote by f^(z) the outer functions in the half-planes C^" = {z :
Qz > 2}, C^ = {z : Qz < 2}, respectively with boundary values
\f^(x+^\=a(x).

One can construct these functions as follows:

f^) = exp{±^ f_^ (^^ - ̂ ) loga«)dQ, ±(^-2) > 0.fa \^) — ^^Pl-'-o"^r j_oo

It should be mentioned that

(6.19) /^ - C^)-1.

For detailed explanation about outer functions see, for instance, [25].
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Let H^_ be the usual Hardy space in the half-plane C^". Consider the
weighted Hardy space

(6.20) H^=f^(z)H^.

This is the space of all holomorphic in C^" functions ^(z) such that

1 1 ^ 1 1 ^ = sup F \f^(x + iy)^{x + iy^dx
+.° y>2j-oo

/oo
= \a(x)^(x + 2^)|2cte < oo.

-00

The weighted Hardy space in the half-plane C^ may be denned in a similar
way.

Denote

\S(x^2i)\
a^x)~ l.r+2^/2-

The function
N r dc

^M,N(Z)=^J ^(0^

is holomorphic in C^". Therefore one can read the estimate (6.17) as

(6.21) sMp{\\^M,N\\m } ^ Const
M,N +'^

uniformly with respect to all functions G € PW^^ \\G\\pw^ ^ 1-

h. The dual of weighted Hardy spaces. To evaluate the norm of
a function from a weighted Hardy space we need the following.

LEMMA 6.5. — Let the weight function a(x) ^ 0 belong to (HS) and
b(x) = {a(x))~1. Then the space dual to H\ ̂  admits the representation
(H^. J* = H2, ^. The functional CQ corresponding to Q € H2, ^ has the
form

CeW = ( Q(x + 2i)^(x + 2i)dx, ^ € H^
J —00

and ||£e|l(^ j. x MH^,-
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Proof. — Consider the space
/*00

2^(R + 2z) = {/(. +2i): (a^))2^ + 2z)|2(to < oo}.
J —00

Its dual (I^(R + 2z))* admits the natural realization (Z^(R + 2?))* =
Lj(R 4- 2z). The functional Cg corresponding to a function g e Lj(M + 2z),
has the form

/oo

W) = 9(x + 2%)/(a; + 2i)dx, f e ̂ (R + 2i)
-00

and ll^|l(^(R+2z)). x M^(R+2ir

Besides a e(HS) and, hence, b € (HS). Therefore the Hilbert trans-
form is bounded in each space L^(R+2?), L^(R+2i). The Sokhotski-Plemelj
formula leads one to the decompositions

^(R + 2i) = H^+H2^, £J(R + 2i) = H^+H^.

Thus (H^)* = £j(R + 2i)/A, where A is the annihilator of H^. To
complete the proof it remains to mention that A = {g e L2(R+ 2i) •
W)=0,^feH^}=H2^.

i. We use this lemma for a = a-y. Let, as earlier, b = a~1. For Q e H2,,,
denote '

/oo

AM,Ar(9) = 9(a; + 2^M,jv(a- + 2i)dx.
-00

and mention that relation (6.21) is equivalent to

(6.22) sup{||AM,jv(e)|| : 6 € H^, ||e||ff2 ̂  1} < oo.

We have
(6.23)

AM,.(e) = ̂ / ^(oF ^^.^c = / $(C)e(0<.
-M-^rt J-oo s ^-h^j ^u^arn

The integrals over all the vertical segments, but [J?_M + Z,^-M - z] and
[^N+I + ̂  RN-^-I - i} disappear. Therefore in (6.23) one may integrate over
the curve TM,N which is the boundary of the rectangle with the vertices
R-M ±Z,RN+I =H.

Let fa^ be the outer function in C- with the boundary values
|/^(a;+2z)|=a^).Then

©(0 = /o;(C)©o(C); ©o € H^ ||eo||^2 < 1.
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Combining this with (6.15) one obtains

AM,N(O) = ̂  / ^/o;(C)©o(CX
_^TM,N ̂ a

and we need to estimate Sa/(C) ^Tom below on TM,N. The function F^(^) =
So/(^) exp(—i7rz) belongs to the Nevanlinna class in C- and the factoriza-
tion theorem (see e.g. [25]) yields

S^(z) = e^p(i7rz)f^^^(z)B^{z),

where B^(z) is the Blaschke product for the half-plane C-, corresponding
to the zero set {\n(^)}- (Here the singular part of the decomposition
vanishes because the function S^(z) admits an analytic continuation at
each point of the boundary of C-, see e.g. [25]).

With account of (6.19) we obtain

AM,N(Q) = / -^(/l^(^)|(C))~l^(C)eo(C)exp(-^7^C)dC
^YM.JV •Du>\>f)

(6.24) = I _^^-(c)eo(C)exp(-^CX,
JVM.N •""(-U

where
, , . _ , , . \S(X+2i)\ 1d(x) - a^x) - ̂ ^ ^ ̂  ^ ̂  ̂ ^.

By Theorem 6 there exists a constant C = C'(a>,"y) such that, for almost
all w € n,

\S(X+2i)\ ,
l^o^)!^1^ )

and, finally, d^[x) < Const (1 + la;!"'1'/4), whence (evidently)

|/,-(C)| < Const |/(^|)-^| ̂  1C - 3z|-7/4, C 6 C-.

Returning to (6.24) we have

|AM,N(O)| ^ Const ̂  ^(Olieo^l^J^i^-
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j. To complete our construction we need the following lemma.

LEMMA 6.6. — -For almost all uj 6 f^ there exists a constant ko =
^0(^,7) such that

|^(C)||C - 3ZJ774 ̂ o, C € YM,N,M,^V € Z.

The constant ko is independent of M, N € Z .

We postpone the proof until the next subsection. Assuming this
lemma to be already proved, it remains only to use the inequalities

sup / [^(OhdCl^ConstllGII\\PW^
M,NJrM,NM,NJTM,N

SUP / leo^ldCl^Constlieoll^;
M,NJrM,N

this follows from the uniform square integrability of the functions G, OQ
along each horizontal line R + iy^ \y\ < 2.

We have

|AM,N(e)[ < Const / |G(C)||eo(C)||<|
^TM,^

< ( / IG^Kl)1^ / leo^l2!^!)172 ^ const
^JrM,N / ^TM,^ /

uniformly with respect to M, N € Z. This completes the proof of Theorem
7 (subject to the lemma above).

k. Proof of Lemma 6.6. Taking into account that all the zeroes \k{^)
are real we have

1^(01= n C-Afc(o;)
C-A^)-4z

C-2z
Afc(^)-2?

1-
C-2z

Afc(o;)+2z

-i

We compare this quantity with the similar one corresponding to the
unperturbed zeroes:

C-2z ||. C-2z |-1iw)i=n|i-^||'-^
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We have

|5.(C)/^(C)1

^nf i - c-^ Vi--^-2^"1!^U1 Afc(o;)-2zA A,-2^ J

.Wi ^ Vi ^VT
\^\1 Afc(o;)+2zA \k+2ij f

After estimating the quantities in the braces from below and from above
(one can do it exactly in the same way as when proving Theorem 6), we
see that, for almost all uj € ^

^-(0 ^ Const Kp/4, C e TM,N, M, TV e z,
^(O

where the constant depends only on 7 and ci;.

It remains to prove that

|B(C)|>fci,CeTM,N,M,^veZ.

Estimates of this type are standard, see e.g. [4]. We include the necessary
arguments here in order to make the exposition self-contained. In fact we
prove a statement little bit more general:

Let d = inf{AA;+i — \k}- For each e > 0 there exists a constant
k^ = fci(e,d) such that

|B(C)|>fci , f o r | Q C l < 2 , dist(C,A)>e.

Indeed, without loss of generality one can assume 0 < 5RC < I?
(otherwise we can shift the sequence A). Then we have

wc)i- n n }\(l+
\|Afc|^20 |Afc|>20^

= IIl(C)Il2(C).

4z
\k - 1i,) [ 1 Afc+4z-J

The first product contains at most 20/d factors and, clearly, is bounded
(from both sides) by constants depending on d and e only.

Since |(Afe - 2z)-\ \(\k + 4z - C)"1! < 1/8 for |Afc| > 20, we have
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|log|Il2(C)||= ^ E
)Afc|>20

log 1+
4z

Afc -2z
+ log 1 -

A f c + 4 z - C ,

SR E <
\. l^on x

| |Afc|>20

The last term is independent of A.

Afc - 2i \k + 4? - C, ^ 10 E \2 •A^|Afe|>20 fc

Q.E.D.

1. Now we outline the proof of Theorem 8. Since statement a. is
already proved, it remains to consider statement b. only. Direct calculation
shows that the operator TM,N defined in (6.16), being a partial sum of the
Lagrange-Hermite interpolation series, admits the representation

N

(6.25) TM,N : G(\)
^ ^ p^1 G^(W)
2^ 2^ 2^ ——/»——^iW^

n=-MAfc(o;)(El\ 1=0

where the functions Hk,i are defined in relation (6.4).

It is clear that the righthand side of relation (6.25) approaches the
function G{\) as M, N —^ oo if the latter decays fast enough when A —^ ±00.
Since such functions are dense in PWjr? and, by Lemma 6.4, the operators
TM,N are uniformly bounded from PW^ into PW^-y, it follows that, for
each function G C PW^, the series

00 ___ Pfc—1

(6.26) 5,(A) E E E
n=-ooAfc(o/)€rn 1=0

G^(\k^)) ^(A),

converges to G in the space PW^^-^ whose norm is weaker than the norm
of PW^. (We mention that this series coincides with (2.19) in the case when
all points \n(^) are distinct).

Theorem 8 says that series (6.26) for each function G G PW^^
converges to G in the space PW/r? whose norm is weaker than the norm of
G 6 PW^^. One can carry the proof of this statement in a very similar
way; the main step — the proof of uniform boundedness of the operators
TM,N from G G PW^^ into PW^ is a slight modification of the proof of
Lemma 6.4. We omit the details.
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7. Local convergence of series expansions
in random exponential systems.

In this section we prove Theorem 9.

a. First we obtain a representation for the partial sum
pfe-i

S^(/; R,T) = ^ ^ Ck,it1 exp(zAfe(o;)t),
R<\k<T 1=0

assuming, as usually, that all zeroes \k(^) are simple (i.e. pk = 1 for all fc).
The elements of the biorthogonal system are

1 r ° ° <? (\}
(7.1) h^{t) = - / ^ ) exp(-zAt)dA,

27r J_oo 6^(Afe(a;))(A - \kW)

and the coefficients of series (2.11) have the form
1 f°° <? (\}

(7.2) c^f) = - / ^w r^^W^27r J_oo 5^(Afe(a;})(A - Afc(a;))
where

(7.3) F(A) = /' /(t) exp(-a^)dt.
J—7T

Therefore

V f f ' R T ^ 1 r ^ (\}F(\} X" exp(zAfc(c^)
^Ui^1) = n-~ / ^a;(A)^(A) ^ , ^/ ̂  /< ^^^———^ /, ,\\ dA'

27r </—— R<W<T ^(A^a;))(A - ̂ (a;))

Denote by TR^T a closed curve whose interior GR^T contains A^ D
(J2,r) and does not contain other points of A^ and define ^j?,r(A) = 1, if
A € GR,T and ^i?,r(A) = 0 otherwise. We have

J_ r exp(z^) ^
27nyrH,.^(C)(A-C) s

^ v-^ exp(zAfc(^)f) _ exp(zAf)

"^XrW^))^-^))" ^W
Therefore

S,(/;^,T) = 1 / exp(zAt)F(A)dA
Z7r JRnGn T

^^^(^,^^M^^

(7.4) =^\f;R,T)+^\f;R,T).
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b. The first summand S^ (/; A, T) is independent of a;. It simulates
the behavior of the classical partial Fourier sums. Indeed, taking (7.3) into
account we have

^(/^W) - f ^expCT-r))-exp(^-T))^
27T J_^ i(t - r)

and comparing the obtained kernel with that of Dirichlet we obtain
(7.5)

E^(/;A,r)(^) - S(f^R,T)(t) ̂  0 as R -. -oo,T ̂  oo; t e (-7r,7r).

c. Therefore we need to construct a sequence 7^(= 7^(/,cc;)) =
{-RN}°°OO; JR^ -^ ±00 as N -^ ±00 so that

^2) (/; A-M, RN+l)(t) -> 0, M, TV ̂  +00,^ € (-7T, 7T).

We have (not specifying the contour TR^)

^ -.(/,fi,r)«) = — / "̂ ) r ̂ w^.
•fc7r ^ ^r^T ^^U ^-00 ^ -C

Denote r^ y = r^r H C^' and consider the quantities

(-) .̂,r)(.)^^^)^^m^
separately. (We recall that here, as earlier, we assume C^ = {z\ Qz > 2}
and C~ = [z\ Qz < 2}.)

d. Transformation of ^(/;^,T). By Theorem 6 the function S^
on the line R + i is comparable with the function S:

(7-7) C^(l + M)"̂  + z)\ < \S^(x + i)\ < C^(l + \x\)^\S(x + z)|

for each /3 > 0. Take /? to provide that the squares of both the right- and
lefthand sides of this inequality satisfy the (HS) condition.

Denote by e+(A) the outer function in {z'.Qz > 1} satisfying the
condition |e+(rr + i)\ = (1 + M^I-S^ + z)|. We have \e^(x + z)|2 e(HS).

All zeroes of the function S are real. Therefore (see the similar
reasoning in the previous section)

(7.8) |6+(C)[ = (1 + ICI^I^OH exp(z<)[, QC > 1.
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For C e r^ y one can replace the inner integral in (7.6) by

^•WFW^.^
J-oo+i A ~ S

As in the previous section,

(7.9) 6+(C) = e+(C)9°+(C), Q°, e H\Q(: > 1).

Combining (7.6), (7.8), (7.9) we obtain

|a^(/;A,r)(t)| ^ const / (i+ici^ex^-^+^aoi^ne^oildCI.
Jr^ °a;(<J

Estimating the function So;(C) from below (via *?(€)), we, finally, obtain
(7.10)

|^(/;^,r)(t)| ̂  Const { (l+ICirexp^+Tr^Oie^Ollda
^IT

here the value o;(= 2/3) may be chosen arbitrarily small (if we increase the
constant before the integral).

e. Now define the contour F^y as follows:

r^,T = I-R u i^ u 1} u IT u c^ u c^^,
where J^ denote the segments [a, a =L zlog2 |a|] + 2i and C^y denote the
half-circles located in the upper and lower half-planes respectively with
diameters [R ± i log2 \R\,T±i log2 |T|] + 2i. So r^ y = J^ u J<? u GR T and

|^(/;J?,r)W| ̂  Const f / + / + / ) (1+ ICD'exp^+Tr)^)
\Ji^ J i } Jc^)

|e^(c)||dC|=:^(/;-R)W+^(/;r)W+A^(/;^,r)(^).

f. The definition of the contour TR^T provides, for t € (—7r,7r),

sup { ( l + K D ^ e x p f - ^(t+7r)Q?c)} -^ 0 as R -^ -oo.T -^ oo.
Cec^l v 2 ) }

Besides Q^-(C) -^ O ^ C —)> 005^;C > 1- The (essentially) same estimates as
when proving the Jordan lemma yield

A^(/;fi,r)W^o,fi-^-oo,r-.oo
for each i G (—'TT, 7r).
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Therefore to estimate the quantity |a^-(/; A, T)(t)\ it suffices to cons-
truct a sequence 7Z(= 7Z(/,o;)) = {^v}00^;^ -^ ±00, as N -^ ±00
so that

(^l) ^(/;^)^0,A^±oo

for any t e (-7r,7r).

g. Denote G = {C € C+; 9C < log2 I^CI + 2}. We need the relation

(7-12) //(loglCD-'ie^l^m^Constiien^^),
here, as usually, dm^ denotes the planar Lebesgue measure.

In order to obtain this relation we recall that a measure p, in C^ is a
Carleson measure if, for all x e R and h > 0

/^({C == $ + ̂ ; a- ^ ̂  x + /i, 2 ^ 77 < 2 + h}) ̂  Ch

with a constant C independent of x and h. (For definition and properties
of Carleson measures see e.g. [25], [26].) For such measures the Carleson
theorem says

{ f^ W^z) ̂  Const ||e[|̂ ,̂ 6 € ^2(C+).

To obtain (7.12) it now suffices to mention that the measure d^z =
(log(l + M))"2;^'^)^, (here \Q is the characteristic function of G)
is a Carleson measure in C"1".

Now denote Gn = {C € G;n < ^C ^ ^ + 1} and rewrite (7.12) with
6 = G^ in the form

E^+K)10^!71!]"1 /7 (l+ICIQI)©^C)12^<Go^|[e^||^^).
n ^ ^Gn v /

which, in particularly, yields

l1^!71!1"20 / / ^ + I^CDie^oi^mc = o.
•J JGn

For each e > 0 denote

r /-log2 |^|
^,n={$c[n,n+1);|</ |e^(^+^)|2d77>6}.
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The Chebyshev inequality yields

liminf Inl^^mesEe n = 0
n—»'±oo '

and, thus, for each c > 0, there exists a sequence {n;(e)}°°oo; r^ —> ±00, k —>
±00 such that

^ (l+|cn|e^c)|2dK|<6.^+v
^(<)

In order to obtain a sequence satisfying (7.11) it now suffices to use the
diagonalization procedure.

h. One can consider the quantity aj(/;I?,r) in a similar way by
taking into account that the half-plane C~ contains the zeroes of the
functions S and 5^. Therefore, to estimate the function S^(\) from below
we also need to estimate the Blaschke product with respect to the zeroes
A^. This may be done in the same way as in the previous section.

In addition it can easily be seen that the sequence 7^ = {RN} may
be chosen so that dist(7?., A^ U A) > 0 (thus satisfying the hypothesis of
Theorem 6) and simultaneously

a^(/; J?-M, RN) -> 0, M, N -> oo,

aj(/;^-M,fiN)-^0,M,^-^oo.

This is the desired sequence.
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