Let be the Beurling algebra with weight on the unit circle and, for a closed set , let . We prove that, for , there exists a closed set of measure zero such that the quotient algebra is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras and the algebra of absolutely continuous functions on , we characterize the closed sets for which the restriction algebras and are generated by their idempotents.
Soit l’algèbre de Beurling à poids sur le cercle unité et, pour un ensemble fermé , soit . Nous montrons que, pour , il existe un ensemble fermé de mesure nulle tel que l’algèbre quotient n’est pas engendrée par ses idempotents, contrastant par là avec un résultat de Zouakia. De plus, pour les algèbres de Lipschitz et l’algèbre des fonctions absolument continues sur , nous caractérisons les ensembles fermés tels que les algèbres restrictions et soient engendrées par leurs idempotents.
@article{AIF_1996__46_4_1095_0, author = {Pedersen, Thomas Vils}, title = {Idempotents in quotients and restrictions of {Banach} algebras of functions}, journal = {Annales de l'Institut Fourier}, pages = {1095--1124}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {4}, year = {1996}, doi = {10.5802/aif.1542}, zbl = {0853.46047}, mrnumber = {98b:46070}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1542/} }
TY - JOUR AU - Pedersen, Thomas Vils TI - Idempotents in quotients and restrictions of Banach algebras of functions JO - Annales de l'Institut Fourier PY - 1996 SP - 1095 EP - 1124 VL - 46 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1542/ DO - 10.5802/aif.1542 LA - en ID - AIF_1996__46_4_1095_0 ER -
%0 Journal Article %A Pedersen, Thomas Vils %T Idempotents in quotients and restrictions of Banach algebras of functions %J Annales de l'Institut Fourier %D 1996 %P 1095-1124 %V 46 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1542/ %R 10.5802/aif.1542 %G en %F AIF_1996__46_4_1095_0
Pedersen, Thomas Vils. Idempotents in quotients and restrictions of Banach algebras of functions. Annales de l'Institut Fourier, Volume 46 (1996) no. 4, pp. 1095-1124. doi : 10.5802/aif.1542. https://aif.centre-mersenne.org/articles/10.5802/aif.1542/
[1] The Wedderburn Decomposition of Some Commutative Banach Algebras, J. Funct. Anal., 107 (1992), 105-121. | MR | Zbl
and ,[2] Spectral Synthesis, Academic Press, New York-London-San Francisco, 1975. | Zbl
,[3] Complete Normed Algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | Zbl
and ,[4] Commutative Normed Rings, Chelsea Publishing Company, Bronx, New York, 1964.
, and ,[5] The Stone-Weierstrass theorem in Lipschitz algebras, Ark. Mat., 8 (1969), 63-72. | MR | Zbl
,[6] Real and Abstract Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965. | Zbl
and ,[7] Séries de Fourier absolument convergentes, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR | Zbl
,[8] Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. | MR | Zbl
and ,[9] An Introduction to Harmonic Analysis, John Wiley & Sons, New York, 1968. | MR | Zbl
,[10] Impossibilité de la synthèse spectrale sur les groupes abeliens non compacts, Publ. Math. Inst. Hautes Etudes Sci., 2 (1959), 85-92. | Numdam | MR | Zbl
,[11] The Work of Silov on Commutative Semi-simple Banach Algebras, volume 20 of Notas de Matemática. Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1959. | MR | Zbl
,[12] Continuous translation of Hölder and Lipschitz functions, Can. J. Math., 12 (1960), 674-685. | MR | Zbl
,[13] Banach Algebras of Functions on the Circle and the Disc, Ph. D. Dissertation, University of Cambridge, October 1994.
,[14] General Theory of Banach Algebras, D. Van Nostrand Company, Princeton, N.J., 1960. | MR | Zbl
,[15] Functional Analysis, McGraw-Hill Book Company, New York, 1973. | MR | Zbl
,[16] The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111 (1964), 240-272. | MR | Zbl
,[17] Homogeneous rings of functions, Amer. Math. Soc. Transl., 92, 1953, Reprinted in Amer. Math. Soc. Transl. (1), 8 (1962), 392-455. | Zbl
,[18] Idéaux fermés de A+ et L1(ℝ+) et propriétés asymptotiques des contractions et des semigroupes contractants, Thèse pour le grade de Docteur d'Etat des Sciences, Université de Bordeaux I, 1990.
,[19] Trigonometric Series, volume 1, Cambridge University Press, second edition, 1959. | Zbl
,Cited by Sources: