Duality theorems for Hardy and Bergman spaces on convex domains of finite type in n
Annales de l'Institut Fourier, Tome 45 (1995) no. 5, pp. 1305-1327.

Nous étudions les espaces de Hardy, Bergman, Bloch et BMO pour des domaines convexes de type fini dans n. Nous calculons les duaux de ces espaces et nous mettons en lumière les propriétés essentielles des domaines complexes de type fini, qui rendent ces théorèmes possibles.

We study Hardy, Bergman, Bloch, and BMO spaces on convex domains of finite type in n-dimensional complex space. Duals of these spaces are computed. The essential features of complex domains of finite type, that make these theorems possible, are isolated.

@article{AIF_1995__45_5_1305_0,
     author = {Krantz, Steven G. and Li, Song-Ying},
     title = {Duality theorems for {Hardy} and {Bergman} spaces on convex domains of finite type in ${\mathbb {C}}^n$},
     journal = {Annales de l'Institut Fourier},
     pages = {1305--1327},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {45},
     number = {5},
     year = {1995},
     doi = {10.5802/aif.1497},
     zbl = {0835.32004},
     mrnumber = {96m:32002},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1497/}
}
TY  - JOUR
AU  - Krantz, Steven G.
AU  - Li, Song-Ying
TI  - Duality theorems for Hardy and Bergman spaces on convex domains of finite type in ${\mathbb {C}}^n$
JO  - Annales de l'Institut Fourier
PY  - 1995
SP  - 1305
EP  - 1327
VL  - 45
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1497/
DO  - 10.5802/aif.1497
LA  - en
ID  - AIF_1995__45_5_1305_0
ER  - 
%0 Journal Article
%A Krantz, Steven G.
%A Li, Song-Ying
%T Duality theorems for Hardy and Bergman spaces on convex domains of finite type in ${\mathbb {C}}^n$
%J Annales de l'Institut Fourier
%D 1995
%P 1305-1327
%V 45
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1497/
%R 10.5802/aif.1497
%G en
%F AIF_1995__45_5_1305_0
Krantz, Steven G.; Li, Song-Ying. Duality theorems for Hardy and Bergman spaces on convex domains of finite type in ${\mathbb {C}}^n$. Annales de l'Institut Fourier, Tome 45 (1995) no. 5, pp. 1305-1327. doi : 10.5802/aif.1497. https://aif.centre-mersenne.org/articles/10.5802/aif.1497/

[BA] S. Ross Barker, Two theorems on boundary values of analytic functions, Proc. A.M.S., 68 (1978), 54-58. | MR | Zbl

[BEA] F. Beatrous, Lp estimates for extensions of holomorphic functions, Michigan Math. J., 32 (1985), 361-380. | MR | Zbl

[BL] F. Beatrous and S.-Y. Li, On the boundedness and Compactness of operators of Hankel type, J. Funct. Anal., vol. 111 (1993), 350-379. | MR | Zbl

[B] H. P. Boas, The Szegö projection, Sobolev estimates in the regular domain, Trans. A.M.S., 300 (1987), 109-132. | Zbl

[BEL] S. Bell, Extendibility of Bergman kernel function, Complex analysis II, Lecture Notes in Math., 1276, 33-41, Berlin-Heidelberg-New York. | MR | Zbl

[C] D. Catlin, Subelliptic estimates for the ∂-Neumann problem, Ann. Math., 126 (1987), 131-192. | MR | Zbl

[CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bulletin A.M.S., 83 (1977), 569-643. | MR | Zbl

[CHE] L. Chen, Ph.D. Thesis, Univ. of California at Irvine, 1994.

[CHR] M. Christ, Lectures on Singular Integral Operators, Conference Board of Mathematical Sciences, American Mathematical Society, Providence, 1990. | Zbl

[COU] B. Coupet, Régularité d'applications holomorphes sur des variétés totalement réelles, Thèse, Université de Provence, 1987.

[CRW] R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. | MR | Zbl

[DAF] G. Dafni, Hardy spaces on some pseudoconvex domains, Jour. Geometric Analysis, (1995). | Zbl

[F] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), 1-65. | MR | Zbl

[FS] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math., 129 (1972), 137-193. | MR | Zbl

[H] L. Hörmander, Lp estimates for pluri-subharmonic functions, Math. Scand., 20 (1967), 65-78. | Zbl

[KER] N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195 (1972), 149-158.

[K1] S. Krantz, Function Theory of Several Complex Variables, 2nd. ed., Wadsworth, Belmont, 1992. | MR | Zbl

[K2] S. Krantz, Invariant metrics and the boundary behavior of holomorphic functions, Jour. of Geometric Analysis, 1 (1991), 71-97. | MR | Zbl

[K3] S. Krantz, Holomorphic functions of bounded mean oscillation and mapping properties of the Szegö projection, Duke Math. J., 47 (1980), 743-761. | MR | Zbl

[KL1] S. Krantz and S.-Y. Li, A note on Hardy spaces and functions of bounded mean oscillation on domains in ℂn, Michigan Math. Jour., 41 (1994), 51-72. | MR | Zbl

[KL2] S. Krantz and S.-Y. Li, On the Decomposition Theorems for Hardy Spaces in Domains in ℂn and Applications, J. of Fourier Anal. and Appl., to appear. | Zbl

[MCN1] J. Mcneal, Convex domains of finite type, Jour. Funct. Anal., 108 (1992), 361-373. | MR | Zbl

[MCN2] J. Mcneal, Estimates on the Bergman kernels of convex domains, Advances in Math., 109 (1994), 108-139. | MR | Zbl

[MS1] J. D. Mcneal and E. M. Stein, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J., 73 (1994), 177-199. | MR | Zbl

[MS2] J. D. Mcneal and E. M. Stein, The Szegö projection on convex domains, preprint. | Zbl

[NSW] A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155 (1985), 103-147. | MR | Zbl

[NRSW] A. Nagel, J.P. Rosay, E.M. Stein, and S. Wainger, Estimates for the Bergman and Szegö kernels in ℂ2, Ann. Math., 129 (1989), 113-149. | MR | Zbl

[ST1] E.M. Stein, Singular integral and differentiability properties of functions, Princeton University Press, 1970. | MR | Zbl

[ST2] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, 1972. | MR | Zbl

  • Wang, Wei; Wu, Qingyan Atomic decomposition theorem for Hardy spaces on products of Siegel upper half spaces and bi-parameter Hardy spaces, The Journal of Geometric Analysis, Volume 33 (2023) no. 11, p. 40 (Id/No 351) | DOI:10.1007/s12220-023-01384-w | Zbl:1523.32011
  • Alexandre, William Hp-corona problem and convex domains of finite type, Journal of Mathematical Analysis and Applications, Volume 508 (2022) no. 2, p. 25 (Id/No 125905) | DOI:10.1016/j.jmaa.2021.125905 | Zbl:1487.30041
  • Dao, Nguyen Anh; Krantz, Steven G.; Lam, Nguyen Cauchy integral commutators and Hardy factorization on Lorentz spaces, Journal of Mathematical Analysis and Applications, Volume 498 (2021) no. 1, p. 23 (Id/No 124926) | DOI:10.1016/j.jmaa.2021.124926 | Zbl:1459.42018
  • Dao, Nguyen Anh; Krantz, Steven G. Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 203 (2021), p. 23 (Id/No 112162) | DOI:10.1016/j.na.2020.112162 | Zbl:1457.42027
  • Di Biase, Fausto; Krantz, Steven G. Foundations of Fatou theory and a tribute to the work of E. M. Stein on boundary behavior of holomorphic functions, The Journal of Geometric Analysis, Volume 31 (2021) no. 7, pp. 7184-7296 | DOI:10.1007/s12220-021-00618-z | Zbl:1477.32013
  • Dao, Nguyen Anh Morrey boundedness and compactness characterizations of integral commutators with singular kernel on strictly pseudoconvex domains in Cn, Journal of Mathematical Analysis and Applications, Volume 492 (2020) no. 2, p. 15 (Id/No 124483) | DOI:10.1016/j.jmaa.2020.124483 | Zbl:1447.42014
  • Shamoyan, R. F.; Loseva, V. V. On Hardy type spaces in some domains in Cn and related problems, Vestnik KRAUNTS. Fiziko-Matematicheskie Nauki, Volume 27 (2019) no. 2, pp. 12-37 | DOI:10.26117/2079-6641-2019-27-2-12-37 | Zbl:1474.32020
  • Krantz, Steven G. A Few Miscellaneous Topics, Harmonic and Complex Analysis in Several Variables (2017), p. 395 | DOI:10.1007/978-3-319-63231-5_11
  • JASICZAK, M. EXTENSION AND RESTRICTION FOR BERGMAN SCALE OF SPACES AND ONE-DIMENSIONAL SUBVARIETIES ON CONVEX FINITE TYPE DOMAINS, Nagoya Mathematical Journal, Volume 221 (2016) no. 1, p. 165 | DOI:10.1017/nmj.2016.5
  • Jasiczak, M. Gain of regularity in extension problem on convex domains, Journal of Function Spaces, Volume 2015 (2015), p. 10 (Id/No 295759) | DOI:10.1155/2015/295759 | Zbl:1346.32005
  • Jasiczak, Michał Extension from linear subvarieties for the Bergman scale of spaces on convex domains, Annales Polonici Mathematici, Volume 112 (2014) no. 1, pp. 1-23 | DOI:10.4064/ap112-1-1 | Zbl:1353.32008
  • Shamoyan, R.; Kurilenko, S. Some remarks on distances in spaces of analytic functions in bounded domains with C2 boundary and admissible domains, Chebyshevskiĭ Sbornik, Volume 15 (2014) no. 3(51), pp. 114-130 | Zbl:1434.32007
  • Aizenberg, Lev; Gotlib, Victor; Vidras, Alekos Duality for Hardy spaces in domains of Cn and some applications, Complex Analysis and Operator Theory, Volume 8 (2014) no. 6, pp. 1341-1366 | DOI:10.1007/s11785-013-0337-z | Zbl:1306.32004
  • Koo, Hyungwoon; Li, Song-Ying Composition operators on strictly pseudoconvex domains with smooth symbol, Pacific Journal of Mathematics, Volume 268 (2014) no. 1, p. 135 | DOI:10.2140/pjm.2014.268.135
  • Gao, JinShou Area integral, Littlewood-Paley g-function and BMOA on convex domains of finite type, Science China. Mathematics, Volume 54 (2011) no. 10, pp. 2135-2144 | DOI:10.1007/s11425-011-4238-1 | Zbl:1233.32007
  • Jasiczak, M. Carleson embedding theorem on convex finite type domains, Journal of Mathematical Analysis and Applications, Volume 362 (2010) no. 1, pp. 167-189 | DOI:10.1016/j.jmaa.2009.09.022 | Zbl:1188.32008
  • Li, Song-Ying; Long, SuJuan Compact composition operators on BMOA(Bn), Science in China. Series A, Volume 52 (2009) no. 12, pp. 2679-2687 | DOI:10.1007/s11425-009-0052-4 | Zbl:1204.47032
  • Li, Songying; Ruan, Yingbin On characterizations of isometries on function spaces, Science in China. Series A, Volume 51 (2008) no. 4, pp. 620-631 | DOI:10.1007/s11425-007-0145-x | Zbl:1151.32002
  • Li, Song-Ying; Luo, Wallace Analysis on Besov spaces. II: Embedding and duality theorems, Journal of Mathematical Analysis and Applications, Volume 333 (2007) no. 2, pp. 1189-1202 | DOI:10.1016/j.jmaa.2006.03.074 | Zbl:1135.32006
  • Li, Song-Ying; Luo, Wallace Characterizations for Besov spaces and applications. I., Journal of Mathematical Analysis and Applications, Volume 310 (2005) no. 2, pp. 477-491 | DOI:10.1016/j.jmaa.2005.02.010 | Zbl:1085.32003
  • McNeal, Jeffery D. Uniform subelliptic estimates on scaled convex domains of finite type, Proceedings of the American Mathematical Society, Volume 130 (2002) no. 1, pp. 39-47 | DOI:10.1090/s0002-9939-01-06373-0 | Zbl:0988.32021
  • Krantz, Steven G.; Li, Song-Ying Boundedness and compactness of integral operators on spaces of homogeneous type and applications. II, Journal of Mathematical Analysis and Applications, Volume 258 (2001) no. 2, pp. 642-657 | DOI:10.1006/jmaa.2000.7403 | Zbl:0990.47043
  • Bonami, Aline; Peloso, Marco M.; Symesak, Frédéric Factorization of Hardy spaces and Hankel operators on convex domains in Cn., The Journal of Geometric Analysis, Volume 11 (2001) no. 3, pp. 363-397 | DOI:10.1007/bf02922011 | Zbl:1040.47015
  • Russo, Bernard The small Hankel operator in several complex variables, Complex Analysis and Related Topics (2000), p. 235 | DOI:10.1007/978-3-0348-8698-7_16
  • Burke, Kevin Duality of the Bergman spaces on some weakly pseudoconvex domains, Rocky Mountain Journal of Mathematics, Volume 30 (2000) no. 1, pp. 101-113 | DOI:10.1216/rmjm/1022008978 | Zbl:0978.32003
  • Hansson, Thomas On Hardy spaces in complex ellipsoids, Annales de l'Institut Fourier, Volume 49 (1999) no. 5, pp. 1477-1501 | DOI:10.5802/aif.1727 | Zbl:0944.32004
  • Krantz, Steven G.; Li, Song-Ying; Rochberg, Richard The effect of boundary geometry on Hankel operators belonging to the trace ideals of Bergman spaces, Integral Equations and Operator Theory, Volume 28 (1997) no. 2, pp. 196-213 | DOI:10.1007/bf01191818 | Zbl:0903.47019

Cité par 27 documents. Sources : Crossref, zbMATH