Dans cet article on donne une caractérisation géométrique des feuilletages de dimension 2 sur les variétés compactes orientables de dimension 3, définis par une action différentiable localement libre de .
In this paper we give a geometric characterization of the 2-dimensional foliations on compact orientable 3-manifolds defined by a locally free smooth action of .
@article{AIF_1995__45_4_1091_0, author = {Arraut, Jose Luis and Craizer, Marcos}, title = {Foliations of $M^3$ defined by ${\mathbb {R}}^2$-actions}, journal = {Annales de l'Institut Fourier}, pages = {1091--1118}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {4}, year = {1995}, doi = {10.5802/aif.1486}, zbl = {0833.57014}, mrnumber = {96j:57030}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1486/} }
TY - JOUR AU - Arraut, Jose Luis AU - Craizer, Marcos TI - Foliations of $M^3$ defined by ${\mathbb {R}}^2$-actions JO - Annales de l'Institut Fourier PY - 1995 SP - 1091 EP - 1118 VL - 45 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1486/ DO - 10.5802/aif.1486 LA - en ID - AIF_1995__45_4_1091_0 ER -
%0 Journal Article %A Arraut, Jose Luis %A Craizer, Marcos %T Foliations of $M^3$ defined by ${\mathbb {R}}^2$-actions %J Annales de l'Institut Fourier %D 1995 %P 1091-1118 %V 45 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1486/ %R 10.5802/aif.1486 %G en %F AIF_1995__45_4_1091_0
Arraut, Jose Luis; Craizer, Marcos. Foliations of $M^3$ defined by ${\mathbb {R}}^2$-actions. Annales de l'Institut Fourier, Tome 45 (1995) no. 4, pp. 1091-1118. doi : 10.5802/aif.1486. https://aif.centre-mersenne.org/articles/10.5802/aif.1486/
[1]Stability of blocks of compact orbits of an action of ℝ2 on M3. Hamiltonian Systems and Celestial Mechanics., Edited by E.A. Lacomba and J. Libre, World Scientific (1993). | Zbl
and ,[2]Differentiable conjugation of actions of Rp, Bol. Soc. Bras. Mat., vol. 19, n.1 (1988), 1-19. | MR | Zbl
and ,[3]Un théorème de conjugaison des feuilletages, Ann. Inst. Fourier, Grenoble, 21-3 (1971), 95-106. | Numdam | MR | Zbl
and ,[4]A classification of the topological types of ℝ2-actions on closed orientable 3-manifolds, Publ. Math. IHES, 43 (1973), 261-272. | Numdam | MR | Zbl
, and ,[5]Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1, Ann. Inst. Fourier, Grenoble, 38-1 (1988), 215-244. | Numdam | MR | Zbl
, ,[6]Commuting diffeomorphisms. Global Analysis, Proc. of Symp. in Pure Math., AMS, XIV (1970). | Zbl
,[7]Commuting Vector Fields on S3, Annals of Math., 81 (1965), 70-81. | MR | Zbl
,[8]Relations de conjugaison et de cobordisme entre certains feuilletages, Pub. Math. IHES, 43 (1973), 143-168. | Numdam | MR | Zbl
, ,[9]A classification of closed orientable manifolds of rank two, Ann. of Math., 91 (1970), 449-464. | MR | Zbl
, and ,[10]Topological equivalence of Reeb foliations, Topology, vol. 9 (1970), 231-242. | MR | Zbl
and ,[11]Stability of compact actions of Rn of codimension one, to appear in Comm. Math. Helvet. | Zbl
,[12]Feuilletages et difféomorphismes infiniment tangents à l'identité, Inventiones Math., 39 (1977), 253-275. | MR | Zbl
,[13]Regular iteration of real and complex functions, Acta Math., 100 (1958), 163-195. | MR | Zbl
,[14]Thesis.
,[15]Homogenization of codimension 1 actions of near a compact orbit, ℝn Ann. Inst. Fourier, Grenoble, 44-5 (1994), 1435-1448. | Numdam | MR | Zbl
,Cité par Sources :