In this paper we give a geometric characterization of the 2-dimensional foliations on compact orientable 3-manifolds defined by a locally free smooth action of .
Dans cet article on donne une caractérisation géométrique des feuilletages de dimension 2 sur les variétés compactes orientables de dimension 3, définis par une action différentiable localement libre de .
@article{AIF_1995__45_4_1091_0,
author = {Arraut, Jose Luis and Craizer, Marcos},
title = {Foliations of $M^3$ defined by ${\mathbb {R}}^2$-actions},
journal = {Annales de l'Institut Fourier},
pages = {1091--1118},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {45},
number = {4},
year = {1995},
doi = {10.5802/aif.1486},
zbl = {0833.57014},
mrnumber = {96j:57030},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1486/}
}
TY - JOUR
AU - Arraut, Jose Luis
AU - Craizer, Marcos
TI - Foliations of $M^3$ defined by ${\mathbb {R}}^2$-actions
JO - Annales de l'Institut Fourier
PY - 1995
SP - 1091
EP - 1118
VL - 45
IS - 4
PB - Association des Annales de l’institut Fourier
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1486/
DO - 10.5802/aif.1486
LA - en
ID - AIF_1995__45_4_1091_0
ER -
%0 Journal Article
%A Arraut, Jose Luis
%A Craizer, Marcos
%T Foliations of $M^3$ defined by ${\mathbb {R}}^2$-actions
%J Annales de l'Institut Fourier
%D 1995
%P 1091-1118
%V 45
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1486/
%R 10.5802/aif.1486
%G en
%F AIF_1995__45_4_1091_0
Arraut, Jose Luis; Craizer, Marcos. Foliations of $M^3$ defined by ${\mathbb {R}}^2$-actions. Annales de l'Institut Fourier, Tome 45 (1995) no. 4, pp. 1091-1118. doi: 10.5802/aif.1486
[1] and , Stability of blocks of compact orbits of an action of ℝ2 on M3. Hamiltonian Systems and Celestial Mechanics., Edited by E.A. Lacomba and J. Libre, World Scientific (1993). | Zbl
[2] and , Differentiable conjugation of actions of Rp, Bol. Soc. Bras. Mat., vol. 19, n.1 (1988), 1-19. | Zbl | MR
[3] and , Un théorème de conjugaison des feuilletages, Ann. Inst. Fourier, Grenoble, 21-3 (1971), 95-106. | Zbl | MR | Numdam
[4], and , A classification of the topological types of ℝ2-actions on closed orientable 3-manifolds, Publ. Math. IHES, 43 (1973), 261-272. | Zbl | MR | Numdam
[5], , Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1, Ann. Inst. Fourier, Grenoble, 38-1 (1988), 215-244. | Zbl | MR | Numdam
[6], Commuting diffeomorphisms. Global Analysis, Proc. of Symp. in Pure Math., AMS, XIV (1970). | Zbl
[7], Commuting Vector Fields on S3, Annals of Math., 81 (1965), 70-81. | Zbl | MR
[8], , Relations de conjugaison et de cobordisme entre certains feuilletages, Pub. Math. IHES, 43 (1973), 143-168. | Zbl | MR | Numdam
[9], and , A classification of closed orientable manifolds of rank two, Ann. of Math., 91 (1970), 449-464. | Zbl | MR
[10] and , Topological equivalence of Reeb foliations, Topology, vol. 9 (1970), 231-242. | Zbl | MR
[11], Stability of compact actions of Rn of codimension one, to appear in Comm. Math. Helvet. | Zbl
[12], Feuilletages et difféomorphismes infiniment tangents à l'identité, Inventiones Math., 39 (1977), 253-275. | Zbl | MR
[13], Regular iteration of real and complex functions, Acta Math., 100 (1958), 163-195. | Zbl | MR
[14], Thesis.
[15], Homogenization of codimension 1 actions of near a compact orbit, ℝn Ann. Inst. Fourier, Grenoble, 44-5 (1994), 1435-1448. | Zbl | MR | Numdam
Cité par Sources :



