We consider some variants of Łojasiewicz inequalities for the class of subsets of Euclidean spaces definable from addition, multiplication and exponentiation : Łojasiewicz-type inequalities, global Łojasiewicz inequalities with or without parameters. The rationality of Łojasiewicz’s exponents for this class is also proved.
Nous considérons certaines variantes des inégalités de Łojasiewicz pour la classe des sous-ensembles des espaces euclidiens définis par addition, multiplication et exponentiation : les inégalités de type de Łojasiewicz, les inégalités de Łojasiewicz globales avec ou sans paramètres. La rationalité de l’exposant de Łojasiewicz pour cette classe est aussi démontrée.
@article{AIF_1995__45_4_951_0, author = {Ta L\^e Loi}, title = {{\L}ojasiewicz inequalities for sets definable in the structure ${\mathbb {R}}_{{\rm exp}}$}, journal = {Annales de l'Institut Fourier}, pages = {951--971}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {4}, year = {1995}, doi = {10.5802/aif.1480}, zbl = {0831.14024}, mrnumber = {96j:14040}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1480/} }
TY - JOUR AU - Ta Lê Loi TI - Łojasiewicz inequalities for sets definable in the structure ${\mathbb {R}}_{{\rm exp}}$ JO - Annales de l'Institut Fourier PY - 1995 SP - 951 EP - 971 VL - 45 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1480/ DO - 10.5802/aif.1480 LA - en ID - AIF_1995__45_4_951_0 ER -
%0 Journal Article %A Ta Lê Loi %T Łojasiewicz inequalities for sets definable in the structure ${\mathbb {R}}_{{\rm exp}}$ %J Annales de l'Institut Fourier %D 1995 %P 951-971 %V 45 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1480/ %R 10.5802/aif.1480 %G en %F AIF_1995__45_4_951_0
Ta Lê Loi. Łojasiewicz inequalities for sets definable in the structure ${\mathbb {R}}_{{\rm exp}}$. Annales de l'Institut Fourier, Volume 45 (1995) no. 4, pp. 951-971. doi : 10.5802/aif.1480. https://aif.centre-mersenne.org/articles/10.5802/aif.1480/
[1]Differential functions, Bol. Soc. Bras. Math., vol. 11, n° 2 (1980), 139-190. | MR | Zbl
,[2]Sur les exposants de Łojasiewicz, Comment. Math. Helv., 50 (1975), 493-507. | MR | Zbl
& ,[3]Tame topology and 0-minimal structures, mimeographed notes (1991).
,[4]The field of reals with restricted analytic functions and unrestricted exponentiation : model completeness, 0-minimality, analytic cell decomposition and growth of definable functions, Israel J. Math., 85 (1994), 19-56. | MR | Zbl
& ,[5]Sur les exposants de Łojasiewicz, Thèse, Rennes (1986).
,[6]On the class of system of transcendental equations, Dokl, Akad. Nauk. SSSR, 255, n° 4 (1980), 804-807 (Russian). | Zbl
,[7]Fewnomials, Transl. Math. Monographs AMS, vol. 88 (1991). | Zbl
,[8]Definable sets in ordered structures II, Trans. AMS, 295 (1986), 593-605. | MR | Zbl
, & ,[9]Analytic cell decomposition of sets definable in the structure ℝexp, Ann. Pol. Math., LIX3 (1994), 255-266. | Zbl
,[10]On the global Łojasiewicz inequalities for the class of analytic logarithmico-exponential functions, C. R. Acad. Sci. Paris, t. 318, Série I (1994), 543-548. | MR | Zbl
,[11]Thesis, Krakow (1993).
,[12]Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette (1965).
,[13]Ideals of differentiable functions, Oxford Univ. Press, London, 1966. | Zbl
,[14]The rank of a Hardy field, Trans. AMS, 280 (1983), 659-671. | MR | Zbl
,[15]Idéaux de fonctions différentiables, Springer, Berlin, 1972. | MR | Zbl
,[16]Sur certaines algèbres de fonctions analytiques, Séminaire de géométrie algébrique réelle, Paris VII (1986). | MR | Zbl
,[17]Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskii, Ann. Inst. Fourier, Grenoble, 41-4 (1991), 823-840. | Numdam | MR | Zbl
,[18]Inégalités de Łojasiewicz globales, Ann. Inst. Fourier, Grenoble, 41-4 (1991), 841-865. | Numdam | MR | Zbl
,[19]Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, Oxford (1991).
,[20]Model completeness results for expansions of the real field II : the exponential function, manuscript, Oxford (1991).
,Cited by Sources: