We prove sharp weighted inequalities of the form
where is a differential operator and is a combination of maximal type operator related to and to .
Nous obtenons des estimations de la forme
dans des espaces de Sobolev avec poids. Nous montrons que le résultat est optimal. Ici est un opérateur différentiel, étant le composé de plusieurs opérateurs de type maximal liés avec et .
@article{AIF_1995__45_3_809_0, author = {P\'erez, Carlos}, title = {Sharp $L^p$-weighted {Sobolev} inequalities}, journal = {Annales de l'Institut Fourier}, pages = {809--824}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {3}, year = {1995}, doi = {10.5802/aif.1475}, zbl = {0820.42008}, mrnumber = {96m:42032}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1475/} }
TY - JOUR AU - Pérez, Carlos TI - Sharp $L^p$-weighted Sobolev inequalities JO - Annales de l'Institut Fourier PY - 1995 SP - 809 EP - 824 VL - 45 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1475/ DO - 10.5802/aif.1475 LA - en ID - AIF_1995__45_3_809_0 ER -
%0 Journal Article %A Pérez, Carlos %T Sharp $L^p$-weighted Sobolev inequalities %J Annales de l'Institut Fourier %D 1995 %P 809-824 %V 45 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1475/ %R 10.5802/aif.1475 %G en %F AIF_1995__45_3_809_0
Pérez, Carlos. Sharp $L^p$-weighted Sobolev inequalities. Annales de l'Institut Fourier, Volume 45 (1995) no. 3, pp. 809-824. doi : 10.5802/aif.1475. https://aif.centre-mersenne.org/articles/10.5802/aif.1475/
[A] Weighted nonlinear potential theory, Trans. Amer. Math. Soc., 297 (1986), 73-94. | MR | Zbl
,[AP] Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, 41-1 (1991), 117-135. | Numdam | MR | Zbl
and ,[CWW] Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helvetici, 60 (1985), 217-286. | MR | Zbl
, and ,[CS] Unique continuation for Δ + v and the Fefferman-Phong class, Trans. Math. Soc., 318 (1990), 275-300. | MR | Zbl
and ,[CW] Lp estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. | MR | Zbl
and ,[CR] Uniform L2-weighted Sobolev inequalities, Trans. Amer. Math. Soc., 318 (1990), 275-300.
and ,[F] The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. | MR | Zbl
,[FS1] Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115. | MR | Zbl
and ,[GCRdF] Weighted norm inequalities and related topics, North Holland Math. Studies, 116, North Holland, Amsterdam, 1985. | MR | Zbl
and ,[LN] Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators, Lecture Notes in Mathematics, 1494 (1990), 131-141. | MR | Zbl
and ,[Ma] Sobolev spaces, Springer-Verlag, Berlin, 1985. | MR | Zbl
,[O] Integral transforms and tensor products on Orlicz spaces and Lp,q spaces, J. d'Anal. Math., 21 (1968), 4-276. | MR | Zbl
,[P1] On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces with different weights, to appear in the Proceedings of the London Mathematical Society. | MR | Zbl
,[P2] Weighted norm inequalities for singular integral operators, J. of the London Math. Soc. (2), 49 (1994), 296-308. | MR | Zbl
,[P3] Two weighted norm inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J., 43 (1994). | MR | Zbl
,[S1] Weighted norm inequalities for fractional maximal operators, Proc. C.M.S., 1 (1981), 283-309. | MR | Zbl
,[S2] A characterization of two weight norm inequalities for fractional fractional and Poisson integrals, Trans. Amer. Math. Soc., 308 (1988), 533-545. | MR | Zbl
,[SW] Weighted inequalities for fractional integrals on euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874. | MR | Zbl
and ,[St1] Note on the class L log L, Studia Math., 32 (1969), 305-310. | EuDML | MR | Zbl
,[St2] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970). | MR | Zbl
,[Wil] Weighted norm inequalities for the continuos square functions, Trans. Amer. Math. Soc., 314 (1989), 661-692. | MR | Zbl
,Cited by Sources: