We extend a result of M. Tamm as follows:
Let , be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions . Then there exists such that for all , if is in a neighborhood of , then is real analytic in a neighborhood of .
On généralise un résultat de M. Tamm :
Soit , , définissable dans le corps ordonné des nombres réels augmenté par toutes les fonctions analytiques réelles sur les cubes compacts et toutes les puissances , . Alors, il existe telle que pour chaque , la fonction est dans un voisinage de si et seulement si est analytique dans un voisinage de .
@article{AIF_1994__44_5_1367_0, author = {Dries, Lou van den and Miller, Chris}, title = {Extending {Tamm's} theorem}, journal = {Annales de l'Institut Fourier}, pages = {1367--1395}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {5}, year = {1994}, doi = {10.5802/aif.1438}, zbl = {0816.32004}, mrnumber = {96g:32016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1438/} }
TY - JOUR AU - Dries, Lou van den AU - Miller, Chris TI - Extending Tamm's theorem JO - Annales de l'Institut Fourier PY - 1994 SP - 1367 EP - 1395 VL - 44 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1438/ DO - 10.5802/aif.1438 LA - en ID - AIF_1994__44_5_1367_0 ER -
%0 Journal Article %A Dries, Lou van den %A Miller, Chris %T Extending Tamm's theorem %J Annales de l'Institut Fourier %D 1994 %P 1367-1395 %V 44 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1438/ %R 10.5802/aif.1438 %G en %F AIF_1994__44_5_1367_0
Dries, Lou van den; Miller, Chris. Extending Tamm's theorem. Annales de l'Institut Fourier, Volume 44 (1994) no. 5, pp. 1367-1395. doi : 10.5802/aif.1438. https://aif.centre-mersenne.org/articles/10.5802/aif.1438/
[AM] Reduction theorem for divergent power series, J. Reine Angew. Math., 241 (1970), 27-33. | MR | Zbl
and ,[BM] Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. | Numdam | MR | Zbl
and ,[BS] Analytic functions in topological vector spaces, Studia Math., 39 (1971), 77-112. | MR | Zbl
and ,[DD] p-adic and real subanalytic sets, Ann. of Math., 128 (1988), 79-138. | MR | Zbl
and ,[D1] Remarks on Tarski's problem concerning (ℝ, +, ., exp), Logic Colloquium 1982, eds. G. Lolli, G. Longo and A. Marcja, North Holland, Amsterdam (1984), 97-121. | MR | Zbl
,[D2] A generalization of the Tarski-Seidenberg theorem and some nondefinability results, Bull. Amer. Math. Soc. (N.S.), 15 (1986), 189-193. | MR | Zbl
,[D3] Tame topology and o-minimal structures, (monograph in preparation). | Zbl
,[DMM] The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183-205. | MR | Zbl
, and ,[DM] On the real exponential field with restricted analytic functions, Israel J. Math., 85 (1994), 19-56. | MR | Zbl
and ,[H] Semi-algebraic local triviality in semi-algebraic mappings, Amer. J. Math., 102 (1980), 291-302. | MR | Zbl
,[KPS] Definable sets in ordered structures. II, Trans. Amer. Math. Soc., 295 (1986), 593-605. | MR | Zbl
, and ,[KR] Ensembles sous-analytiques: quelques propriétés globales, C. R. Acad. Sci. Paris, Sér. I Math., 308 (1989), 521-523. | MR | Zbl
and ,[K] Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble), 38-1 (1988), 133-156. | Numdam | MR | Zbl
,[M1] Exponentiation is hard to avoid, Proc. Amer. Math. Soc., 122 (1994), 257-259. | MR | Zbl
,[M2] Expansions of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94. | MR | Zbl
,[M3] Infinite differentiability in polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., (to appear). | Zbl
,[P] Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math., 32 (1984), 556-560. | MR | Zbl
,[PS] Definable sets in ordered structures. I, Trans. Amer. Math. Soc., 295 (1986), 565-592. | MR | Zbl
and ,[T] Subanalytic sets in the calculus of variations, Acta Math., 146 (1981), 167-199. | MR | Zbl
,[To] Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskii, Ann. Inst. Fourier (Grenoble), 41-4 (1991), 823-840. | Numdam | MR | Zbl
,[W] Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, Jour. Amer. Math. Soc., (to appear). | Zbl
,Cited by Sources: