One proves the density of an ideal of analytic functions into the closure of analytic functions in a -space, under some geometric conditions on the support of the measure and the zero variety of the ideal.
On démontre la densité d’un idéal de fonctions analytiques dans l’adhérence dans de toutes les fonctions analytiques, sous des conditions géométriques sur le support de la mesure et sur la variété des zéros de l’idéal.
@article{AIF_1994__44_5_1355_0, author = {Putinar, Mihai}, title = {On dense ideals in spaces of analytic functions}, journal = {Annales de l'Institut Fourier}, pages = {1355--1366}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {5}, year = {1994}, doi = {10.5802/aif.1437}, zbl = {0816.32012}, mrnumber = {96a:32033}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1437/} }
TY - JOUR AU - Putinar, Mihai TI - On dense ideals in spaces of analytic functions JO - Annales de l'Institut Fourier PY - 1994 SP - 1355 EP - 1366 VL - 44 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1437/ DO - 10.5802/aif.1437 LA - en ID - AIF_1994__44_5_1355_0 ER -
%0 Journal Article %A Putinar, Mihai %T On dense ideals in spaces of analytic functions %J Annales de l'Institut Fourier %D 1994 %P 1355-1366 %V 44 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1437/ %R 10.5802/aif.1437 %G en %F AIF_1994__44_5_1355_0
Putinar, Mihai. On dense ideals in spaces of analytic functions. Annales de l'Institut Fourier, Volume 44 (1994) no. 5, pp. 1355-1366. doi : 10.5802/aif.1437. https://aif.centre-mersenne.org/articles/10.5802/aif.1437/
[1] Cohomologie complexe et applications, J. London Math. Soc. (2), 29 (1984), 127-140. | MR | Zbl
,[2] Ideals of holomorphic functions with C∞ boundary values on a pseudoconvex domain, Trans. Amer. Math. Soc., 304 (1987), 323-342. | MR | Zbl
and ,[3] Ensembles pics pour A∞ (D), Ann. Inst. Fourier (Grenoble), 29-3 (1979), 171-200. | EuDML | Numdam | MR | Zbl
and ,[4] Caractérisation et propriétés des ensembles localement pics de A∞ (D), Duke Math. J., 47 (1980), 763-787. | MR | Zbl
and ,[5] Hilbert modules over function algebras, Pitman Res. Notes Math. vol. 217, Longman Sci. Techn., Harlow, 1989. | MR | Zbl
and ,[6] Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math., 4 (1967), 118-138. | EuDML | MR | Zbl
,[7] Zero sets of nonnegative strictly plurisubharmonic functions, Math. Ann., 201 (1973), 165-170. | EuDML | Zbl
and ,[8] Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb., 78 (1969), 611-632 ; Math. USSR Sb., 7 (1969), 597-616. | Zbl
,[9] Theory of functions on complex manifolds, Birkhäuser, Basel-Boston-Berlin, 1984. | Zbl
and ,[10] Global regularity for ∂ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292. | MR | Zbl
,[11] Ideals of differentiable functions, Oxford Univ. Press, Oxford, 1966.
,[12] On algebras of holomorphic functions with C∞-boundary values, Duke Math. J., 41 (1974), 527-535. | MR | Zbl
,[13] Analytic transversality and Nullstellensatz in Bergman space, Contemp. Math., 137 (1992), 367-381. | MR | Zbl
and ,[14] Function theory in the unit ball of Cn, Springer, New York-Heidelberg-Berlin, 1980. | MR | Zbl
,[15] Théorie des distributions, Hermann, Paris, 1966.
,[16] Some aspects of weakly pseudoconvex domains, Proc. Symp. Pure Math., 52 (1991), 199-231. | MR | Zbl
,[17] Noetherianness of rings of holomorphic functions on Stein compact sets, Proc. Amer. Math. Soc., 21 (1969), 483-489. | MR | Zbl
,[18] Idéaux de fonctions différentiables, Springer, Berlin et al., 1972. | MR | Zbl
,Cited by Sources: