Finite monodromy of Pochhammer equation
Annales de l'Institut Fourier, Volume 44 (1994) no. 3, pp. 767-810.

We consider the monodromy group G of the Pochhammer differential equation 𝒫. Let 𝒫 p be the reduce equation modulo a prime p. Then we show that G is finite if and only if 𝒫 p has a full set of polynomial solutions for almost all primes p.

Nous considérons le groupe de monodromie G de l’équation différentielle de Pochhammer 𝒫. Soit 𝒫 p l’équation réduite modulo un nombre premier p. Alors, on montre que G est fini si et seulement si 𝒫 p admet un système fondamental de solutions polynomiales pour presque tous les nombres premiers.

@article{AIF_1994__44_3_767_0,
     author = {Haraoka, Yoshishige},
     title = {Finite monodromy of {Pochhammer} equation},
     journal = {Annales de l'Institut Fourier},
     pages = {767--810},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {44},
     number = {3},
     year = {1994},
     doi = {10.5802/aif.1417},
     zbl = {0812.33006},
     mrnumber = {96c:33018},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1417/}
}
TY  - JOUR
AU  - Haraoka, Yoshishige
TI  - Finite monodromy of Pochhammer equation
JO  - Annales de l'Institut Fourier
PY  - 1994
SP  - 767
EP  - 810
VL  - 44
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1417/
DO  - 10.5802/aif.1417
LA  - en
ID  - AIF_1994__44_3_767_0
ER  - 
%0 Journal Article
%A Haraoka, Yoshishige
%T Finite monodromy of Pochhammer equation
%J Annales de l'Institut Fourier
%D 1994
%P 767-810
%V 44
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1417/
%R 10.5802/aif.1417
%G en
%F AIF_1994__44_3_767_0
Haraoka, Yoshishige. Finite monodromy of Pochhammer equation. Annales de l'Institut Fourier, Volume 44 (1994) no. 3, pp. 767-810. doi : 10.5802/aif.1417. https://aif.centre-mersenne.org/articles/10.5802/aif.1417/

[1] F. Beukers, G. Heckman, Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. | MR | Zbl

[2] D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. | MR | Zbl

[3] Y. Haraoka, Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990).

[4] Y. Haraoka, Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. | Zbl

[5] T. Honda, Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. | MR | Zbl

[6] E.L. Ince, Ordinary differential equations, New York, 1926.

[7] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. | Zbl

[8] N. Katz, Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. | Numdam | MR | Zbl

[9] N. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. | MR | Zbl

[10] E. Landau, Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. | JFM

[11] N. Misaki, Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese).

[12] K. Okubo, On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987.

[13] T. Sasai, On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. | MR | Zbl

[14] T. Sasai, S. Tsuchiya, On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. | MR | Zbl

[15] K. Takano, E. Bannai, A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. | MR | Zbl

[16] E. Whittaker, G. Watson, Modern Analysis, Cambridge, 1927.

[17] T. Yokoyama, On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. | MR | Zbl

[18] T. Yokoyama, On an irreducibility condition for hypergeometric systems, preprint. | Zbl

Cited by Sources: