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FINITE MONODROMY
OF POCHHAMMER EQUATION

by Yoshishige HARAOKA

Introduction.

Grothendieck's zero p-curvature conjecture was first intensively stud-
ied by T. Honda [5] and N. Katz [8], [9]. There followed several results, and
it is known that the conjecture is true for equations of the first order [5],
Picard-Fuchs equations [9], the Gauss hypergeometric equation [9] and the
generalized hypergeometric equation [1]; however, in general the conjecture
is still open. We note that, in the above examples, we can calculate their
monodromy groups.

K. Okubo [12] developed a global theory of Fuchsian differential
equations on the complex projective line. He reduced every Fuchsian
equation to a normal form, defined a class of equations which is free
from accessory parameters and gave an algorithm to calculate monodromy
groups for equations free from accessory parameters (cf. [3], [4], [13], [14],
[17]). Then we expect that, for such equations, the Grothendieck conjecture
is true.

In this paper we study the Pochhammer equation. It is generically
a Picard-Fuchs equation for which the conjecture holds, but is also an
equation free from accessory parameters. Bearing an application to ev-
ery equation free from accessory parameters in mind, we show that the
Grothendieck conjecture holds for the Pochhammer equation by using its
Okubo normal form (not using the integral representation of solutions).

Key words : Grothendieck's zero p-curvature conjecture - Okubo system - Equations free
from accessory parameters - Pochhammer equation - Monodromy - Apparent singular
point.
A.M.S. Classification : 33C60.
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Here we explain Grothendieck's conjecture in a form suitable for our
purpose. Let t i , . . . , tm be elements in C, and set K = Q(^ i , . . . , ̂ ). To
make the statement simple, we assume that ^i , . . . ,^ are algebraically
independent over Q. Consider a linear ordinary differential equation over
K[x]

(E) ao(x)yW + a,(x)y^ + • • • + dn{x)y = 0,

where a, (a;) e K[x] for every z. For almost all primes p e Z (i.e.
except for a finite number of primes), we can reduce the coefficients of
every ai{x) modulo p to obtain the equation (E)p over Kp[x], where
Kp = Fp( t i , . . . , tm)' Then the following holds :

PROPOSITION 0.1 ([5], [9]). — Jf(E) has n algebraic function solutions
which are linearly independent over C, then, for almost all primes p, (E)
has n polynomial solutions in Kp[x] which are linearly independent over
Kp{x?).

This is essentially Eisenstein's theorem (cf. [10]).

Note that the following three conditions are equivalent :

(i) (E) has n linearly independent algebraic function solutions,

(ii) every (analytic) solution of (E) is an algebraic function,

(iii) the monodromy group of (E) is of finite order.

Note also that (E)p has n polynomial solutions in Kp[x] which are linearly
independent over Kp(xp) if and only if (E) has zero p-curvature.

The converse of Proposition 0.1 is Grothendieck's zero j9-curvature
conjecture.

CONJECTURE. — If, for almost all primes p , (E)p has n polynomial
solutions in Kp[x] which are linearly independent over Kp(xP), then every
solution of (E) is an algebraic function.

N. Katz gave an explicit proof of the conjecture for the Gauss
hypergeometric equation in [9, §6]. We apply his manner to the Okubo
normal form, and prove the conjecture for the Pochhammer equation. The
Pochhammer equation is an n-th order Fuchsian differential equation with
regular singular points at x = t^... ,^, oo, and is determined by fixing
the characteristic exponents (A, p) € C71 x C at the singular points. In §1
we give the Okubo normal form of the Pochhammer equation, and obtain
a condition on the exponents (A, p) for the monodromy group to be finite



FINITE MONODROMY OF POCHHAMMER EQUATION 769

(Theorems 1.2 and 1.3). In §2 we consider a reduced Pochhammer equation
modulo prime p, and obtain a condition for it to have n polynomial solutions
(Theorem 2.1). Comparing these conditions, in §3 we prove the conjecture
for the Pochhammer equation (Theorem 3.1).

The Pochhammer equations are divided into generic ones and non-
generic ones (Definition 1.1; generic Pochhammer equations are irreducible
and have no logarithmic solution at every finite singular point). Reduced
equations modulo prime can be regarded as non-generic ones (§2.0); they
may have logarithmic solutions. What we have obtained in Theorem 2.1
is essentially the condition that, for a non-generic Pochhammer equation,
there is no logarithmic solution (i.e. the regular singular point is apparent;
cf. Proposition 1.6 and §2.6). Hence in this paper we consider non-generic
equations as well as generic ones. As a by-product we have obtained a
necessary and sufficient condition for the monodromy group of a reducible
Pochhammer equation to be finite (Theorem 1.3), which is the complemen-
tary result to Takano-Bannai [15] (where they give a list of the Pochhammer
equations which are irreducible and have finite monodromy groups). The
reader who is interested only in the generic case can skip §1.2, §2.6 and the
latter half of the proof of Theorem 3.1.

The author like to express his gratitude to Professor D. Bertrand for
valuable discussions and perpetual encouragement.

Notation.

N : the set of positive integers.

No : the set of non-negative integers.

1. Monodromy of Pochhammer system.

1.0. Let t i , . . . ,^ be n distinct points in P1 \ {oo}, and let
AI, . . . , An, p be complex numbers satisfying

n

(i.i) E^^'j-i
Denote ( A i , . . . , \n) by A. We call the system of differential equations in
Okubo normal form

V(\p): (x-T)d^=A(X,p)Y,
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(1.2)
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T= , A(\p)=

( ^1 AI — p • • • AI — p^
^2- P \2 " • \2- P

\ An - p \n- P " • \n )

the Pochhammer system of rank n. First we note that A(A, p) is diagonal-
izable as follows : Set

/ I 0 . . . 0 A i - p \
0 1 • • . 0 \^-p

(1.3) P=
0 0 . . . 1 A^-i -p

\-1 -i .. . -i ^-p /

then by (1.1) del P = ^ A^- - np ̂  0, and we have
j=i

(1.4) P-lA(A,p)P=

where

(1.5)

Rewriting 'P(A, p) as

P

p'=Y^\,-(n-\)p.
3=1

(1.6) d y = ^ A ^ ) y ,
^=1 x ~ t i /

Ai=i) A(\,p) (i=l,...,n),

(where the above matrix is diagonal with the only non zero element 1 at
the (i,i)-tb position) we see that P(A,p) is Fuchsian with regular singular
points at x = ti,..., tn and oo, that the characteristic exponents at x = ti,
which are the eigen values of A,, are 0 of multiplicity n - 1 and A, and
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that the characteristic exponents at x = oo, which are the eigen values of
^(-A,) = -A(A,p), are -p of multiplicity n - 1 and -// by (1.4). We
i=l
sum up these facts into the scheme

X = t\ • • • X = tn X = 00 1
0 • • • 0 p

(1.7)
0

Ai
0
A.

p
p'

(Moreover we see that P{\p) is free from accessory parameters (cf. [4])).

The classical Pochhammer equation is an n-th order Fuchsian differ-
ential equation

f(A,p):

with

PO{X)Z^ +pi(^71-1) + . . . +pn(x)z = 0

P o ( x ) = ( x - t ^ ' " { x - t n ) ,

Pk(x) = ^ - p + n - l \ ^ ) ^ , /^-p+n-r}qow(x)+
k-1

(k= l , . . . ,n ) ,

q^W

where
n ,

qo(x) = po(x), 91 (x) = Qo(^) ̂  p _ J .
— a' - tjj=i ^

The Riemann scheme of f(A, p) is

(1.8)

( X=t^ ' • ' X = tr,

0 ... 0
1 ... 1

X = 00

1 - P
2 - p

n — 2 • • • n — 2 n — 1 — p
Ai • • • An -p'

The Pochhammer equation £(A, p) is introduced as an extension of the
Gauss hypergeometric equation having a similar integral representation of
Euler type of solutions ([6], [7], [16]) :

(1.9) z,(x) = [ (x - sY-\s - t^-P . . . (5 - tn^ds^
Jr.
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where the path Fj starts from a point XQ, encircles the point tj in the
positive direction to XQ, encircles x in the positive direction to XQ^ encircles
tj in the negative direction to XQ and then encircles x in the negative
direction to XQ. (^1(2;),..., Zn(x}) makes a fundamental system of solutions
of <?(A, p) in the generic case (which we shall define later).

PROPOSITION 1.1. — Let Y = t (y l , . . . , y-n) be a vector of differential
indeterminates. Then

Z = 2/1 + • • • + Vn

induces a transformation of the system P(A,p) into the equation <?(A,/o).

This proposition is shown by a differential algebraic calculation. In
particular the transformation of the Pochhammer system 'P(A, p) into the
Pochhammer equation <f(A,p)

(1.10)
( z \

z'

W71-1)/
=F(x)

[ y i \
V2

\yn)
is a linear transformation with rational coefficients : F{x) € GL(n; C(.r)).

In this section we shall give a condition of the monodromy group of
P(A,p) to be finite. Before proceeding, we note two propositions.

From the scheme (1.7) it follows

PROPOSITION 1.2. — Assume that \j ^ Z for some j e {! , . . . ̂ n}.
Then no solution of the system P(A, p) around x = tj has a logarithmic
term.

The following proposition is obtained by N. Misaki [11].

PROPOSITION 1.3. — The system P(A,/o) is irreducible if and only if

(1.11) Ai - p , . . . , \n - p, p, p' ^ z.

DEFINITION 1.1. — We call the Pochhammer system P(A,/9) generic
if

(1.12) Al, . . . , \n, AI - p , . . . , \n - P, P, P ' ^ Z.
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Thus, by Propositions 1.2 and 1.3, a generic Pochhammer system is
irreducible and has no logarithmic solution at every finite singular point.

1.1. Throughtout this subsection we consider a generic Pochhammer
system P(A,p); namely we assume (1.12). First we give generators of the
monodromy group of P(A, p).

Denote P1 \ { ^ i , . . . , tn, 00} by X. Let C be a simple closed curve in
X passing through ^ i , . . . , t n in this order in the positive direction, and
take a base point to inside C. We define a generator 7 -̂ (j = l , . . . , n )
of 7Ti(X,^o) to be a homotopy class of a simple closed curve which starts
from to^ encircles tj in the positive direction crossing C twice on the arc
tj—\tjtj-\-\ and ends at to.

Set

e{a) = exp(27^^/^TQ/)

for any a € C, and set

eo = e(p),

^ =e(^•) (j-l,...^).

Then, applying Okubo's method to the system V{\ p), or using the integral
representation (1.9), we have

THEOREM 1.1. — Suppose that the Pochhammer system P(X,p) is
generic. Then P(\^p) has a fundamental system of solutions (Vi , . . . ,Y^)
whose analytic continuation along 7/c becomes (Yi , . . . , Yn)gk, where
(1.13)

/ 1 \

9k =

1
(ei - eo)eo"1 • • • (e^-i - eo^o"1 ^k e^+i - eo • • • en - eo

1

for every k = 1, . . . , n. In particular ^ i , . . . , g^ generate the monodromy
group ofP(A, p) with respect to (Y i , . . . , Yn).

We denote by G(A,p) the monodromy group of ^(A.p) which is
generated by ^i , . . . ,^ in Theorem 1.1. It follows from the scheme (1.7)
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that, if G(A, p) is finite, then

(1.14) A i , . . . , A , , p e Q .

From now on we assume (1.14), and call the Pochhammer system P(A,p)
with (1.14) rational.

By a simple calculation we obtain

PROPOSITION 1.4. — Let h be a Hermitian form invariant under
the monodromy group G(A, p) of a rational generic Pochhammer system
P(A,p). Then the Hermitian matrix associated with h is given by

H = a • (hst)i<^s^n,

hss = 4sin7rAs •sin7r(p- As) (s = l , . . . ,n ) ,
(L15) h (e.-eo)(e,-eo)hst = -—————p,——- (5, t = 1,.. . , n, s < t),

es^o /

where a C R.

For any a € R, we define its fractional part (a} by

0 ^ (a) < 1, a - (a) € Z.

By calculating the principal minors of the Hermitian matrix H in Propo-
sition 1.4, we obtain

PROPOSITION 1.5. — The monodromy group G{\p) of a rational
generic Pochhammer system 'P(A, p) has a positive definite invariant Her-
mitian form if and only if one of the following two conditions holds :

n

(1.16 :i) (p)<{\,} ( j = l , . . . , n ) , ^ (A, )<(n- l ) (p)+l ;
j=i

(1.16 : ii) (A,) < (p) a = l , . . . , n ) , (n - l)(p) < ̂ (A,).
j=i

THEOREM 1.2. — Let G(A,p) be the monodromy group of a rational
generic Pochhammer system 'P(A, p), and let D be the common denomina-
tor of the rational numbers A i , . . . , A^, p. Then G(A, p) is finite if and only



FINITE MONODROMY OF POCHHAMMER EQUATION 775

if, for any A € Z prime to D, one of the following two conditions holds :

n

(1.17 : i) (Ap) < (AA,) (j = 1,... ,n), ^(AA,) < (n - l)(Ap) + 1;
j=i

(1.17 : ii) (AA,) < (Ap) ( j = l , . . . , n), (n - l)(Ap) < ^(AA,).
j=i

Proof. — Let CD be a primitive D-th root of 1. Then by Theorem 1.1,
we see that

G(A,p)cGL(n;Z[CD]).

As is explained in [3] (cf. [1]), G(A,p) is finite if and only if, for any
o- C Gal(Q(CD)/Q), the transformed group G{\,pY has a positive definite
invariant Hermitian form.

To any a e Gal(Q((^)/Q), there corresponds a A € Z prime to D
such that

CD ̂  CDA

induces a. Thus G(A,p)°' is obtained from G(A,p) by replacing every Xj
{j = 1,..., n) and p by AA^ and Ap, respectively; namely,

G(A,p)a=G(AA,Ap),

where AA = (AAi , . . . . AAn). Then Proposition 1.5 shows that (1.17 :i or
ii) is a necessary and sufficient condition for G(A, pY to be finite. Hence
the theorem follows. Q.e.d.

1.2. Now we consider a non-generic Pochhammer system P(A,p). In
this case the ̂ /s in Theorem 1.1 do not necessarily generate a monodromy
group of P(A, p), so that we need a close study of solutions.

Assume that \j e Z for some j C {1 , . . . ,n}. Proposition 1.2 asserts
that there may be a logarithmic solution of P{\p) around x = tj. When
there is no logarithmic solution, the singular point x = tj is said to be
apparent.

PROPOSITION 1.6. — Consider a Pochhammer system P(A,p) and
assume that \j e Z for some j e { 1 , . . . , n}. Then x == tj is apparent if and
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only if one of the following four conditions holds :

(1.18:i) A, -peNo ( k ^ j ) ^ X, + ̂ (A^ - p) < o,
A^J

(1.18 :ii) p - A . e N (/^j), A,+^(A,-^0,
fc/j

(1.18:iii) A^O, p e Z , O ^ p ^ A ^ ,
(1.18:iv) A^-2, p c Z , A ^ + l ^ p ^ - 1 .

This will be shown after the calculus of p-curvature (§2.6).

Consider a Pochhammer equation £(A,p) which corresponds to a
Pochhammer system P(\,p) by Proposition 1.1.

PROPOSITION 1.7. — Suppose that p ^ Z and that \j - p e Z for
every j = l , . . . ,n .

(i) If Xj - p < 0 for every j, 8(\,p) has a fundamental system of
solutions (z i , . . . , Zn) such that

z, =(x- t^f,(x - t,) (j = 1,... ,n),

where fj is a polynomial of degree at most {p- \j -1).

(ii) If\j -p ̂  0 for every j, £(X, p) has a fundamental system of solutions
(2:1,.. . ,Zn) such that

z,=(x-t^f,(x-t,) 0 -= l , . . . , n ) ,

where fj is a polynomial of degree at most (N - (\j - p)), N denoting

E(A,-p).
.7=1

Proof. — (i) Let L(z) = 0 be the Pochhammer equation 8(\,p).
Expanding every coefficient of L at x = ̂ i, we have

^^ib^Ep^-^)^-
^==0 k=0

To find a solution of <f(A, p) of exponent 1 - p at x = oo, we put
CO

z={x-^Y~lY,Ci{x-t^-i

i=0
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into L{z) = 0. Then we have

0 = L{z)

={x-t,Y-lY,{Y,g,{^)c^x-t,rj~^}.
j=0 i=0

where
n

9jW = Y,Pe,t-j(p - i - 1) • • • (P - i - ̂ ) U = 0,... ,n).
i=]

(Note that ffn(t) = 0 for every i). Thus we have obtained an infinite system
of linear equations

ffo(0)co = 0,
f fo( l )c i+ff i (0)co=0,

(1.19) n-1

^9j(s-j)cs-j =0.
j=0

Set ni = p — Ai, so that HI € N. Since <?(A,p) has a solution of exponent
AI = p — n\ at x = ̂ i, from the indicial equation we obtain

(p - ni)(p - ni - 1) • • • (p - ni - n + 2){p^i(p - ni - n + 1) +pn-i,o} = 0.

By the assumption p ^ Z, it follows that

J?n,l(p-ni -n+l)+Pn-l,0 =0,

which gives

^n-l(^-l - 1) =0.

Then the infinite system (1.19) has a system of solutions (cz)^o suc^ tnat

Cni-i 7^ 0, Ci == 0 for any % ^ ni.

Hence L(z) = 0 has a special solution

Z = (X - t^-^Co + C^X - ti)-1 + • . . + Cn^(x - ̂ l)-7114-1)

= {X - t^-^ (C^_i + Cn^(x - t,) + . • • + Co(^ - t^1-1).
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The similar holds for every j, and hence we obtain n solutions ^ i , . . . , Zn
in the proposition. Every Zj is an algebraic function with branch points at
tj and oo, so that (^ i , . . . , Zn) is linearly independent.

(ii) If we consider a solution of exponent -// =--(?-}- N) at x = oo :

00

^^_^NY^C,{x-t^-\
i=0

the assertion (ii) is shown in a similar manner as (i). Q.e.d.

THEOREM 1.3. — The monodromy group C?(A,p) of a non-generic
Pochhammer system P(A, p) of rank n is finite if and only if one of the
following eight conditions holds :

(i) p i Z, p - Xj e Z, p - Xj > 0 ( .7=1,. . . ,n),

(ii) p i Z, p - \, e Z, p - X j ^ 0 (j=l,... ,n),

(iii) p,\j eZ, A ^ . - p ^ O ( j = l , . . . , n ) , f; A^ < (n - l)p,
fc=i

(iv) p, A^- eZ, X j - p ^ Q (j = 1 , . . . , n), p ̂  0,

(v) p, A^ e Z (j = 1,... , n), Afc - p ^ 0 for all but one /c = 1,.. . , n,
EAfc<(n-l)p,
fc=i

n

(vi) p,A^- eZ, \ j - p < 0 (j=l,...,n), ^Afe^ (n - l)p,
k=l

(vii) p, A^- C Z, A^ - p < 0 (j = 1, . . . ,n), p < 0,

(viii) p, A -̂ € Z (j = 1,.. . , n), Afe - p < 0 for all but one k = 1,.... n,
E Afc ^ (n - l)p.

fc=i

Moreover, in the cases (i) and (ii), G(A, p) is isomorphic to n-direct product
of the cyclic group generated by e(p), and in the cases (iii) to (viii), G(A, p)
is the identity group.

The proof will be completed in §3. Here we show that the conditions
(i) - (viii) are sufficient conditions.



FINITE MONODROMY OF POCHHAMMER EQUATION 779

Suppose (i) or (ii). Then by Proposition 1.7, the corresponding
Pochhammer equation has a finite monodromy group with generators

-e(p) \ /I \ / I
1 e{p) 1.. , .. ,..., ,

I/ \ I/ \ e(p)

Suppose one of (iii) to (viii). Then by Proposition 1.6 every singular point
x = tj is apparent, so that any solution is meromorphic over P1\{oo} = C,
and hence the monodromy group is the identity group.

2. Reduction of Pochhammer system modulo prime.

2.0. We consider a rational Pochhammer system P{\p); namely we
assume (1.14). By definition P{\p) is a system over the differential field
Q(^i , . . . ̂ tn){x). Throughout this paper we suppose

^ T ^ O , t, ̂ tj (1 <^iJ <^n, i ^ j ) .

Let m be the transcendence degree of Q(^i , . . . ,^n)/Q. Take a transcen-
dence basis (ri , . . . , Tm) contained in { t i , . . . , tn}'

Let D be the common denominator of the rational numbers A i , . . . , Ayi, p,
and take a prime p satisfying

(2.1) WP)=I , P ^ P ' modp,

where p ' is defined by (1.5). Note that there are only finitely many primes
which do not satisfy (2.1). The reduction modulo p

rp : Q H Zp -^ Fp

is extended to a homomorphism

r? : (QnZp)[Ti , . . . ,T^] -^Fp[ri,...,T^]

by setting

^p(^) = n (1 ^ i ^ m).

Since Q(^ i , . . . , ̂ n ) /Q(Ti , . . . , Tm) is a finite algebraic extension, for almost
all primes p the following holds :
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(*) r? can be extended to homomorphisms of (Q n Z)[^ i , . . . , tn], and
for a extension (which is still denoted by 7p),

(2.2) rp(t,) ̂  0, rp(ti) ̂  r^t,) (1 ^ i j ^ n, i ̂  j )

hold.

In the following, for a prime p satisfying (2.1) and (*), we fix an r?
satisfying (2.2). Now 7p is naturally extended to the homomorphism

r? : (Q n Z)[ti,..., tn, x\{Y} -^ Kp(x){Y}^

where we have set

^=Fp(7p(^),... ,rp(^)).

Thus we obtain a system

n\P)p=r^P{\p))

over the differential field Kp(x) of positive characteristic.

Define

Rp : Q n Zp -> Z

by

(2.3)
rp o Rp = 7p,

0 ^ Rp{a) <p for a e Q U Zp.

The main result in this section is the following

THEOREM 2.1. — For a rational Pochhammer system P(A, p) of rank
n, take a prime p satisfying (2.1) and (*). Then the reduced system P(A, p)p
modulo phasn polynomial solutions in Kp[x\ of degrees at most p-1 which
are linearly independent over the Geld of constants Kp^) if and only if
one of the following two conditions holds :

n

(2.4 :i) Rp(p) < ̂ ,(A,) (j=l,...,n), ^Rp(Xj) < (n-l)Rp(p)+p;
3=1

(2.4 : ii) Rp(\,) < R^p) (j = l,..., n), („ _ 1)^) ^ ̂  ĵ .),

j=i
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This section is devoted to the proof of Theorem 2.1. Here we explain
the story.

Define Ap(Ai ) , . . . , Rp(\n), Rp(p) e Z by

(2.5) Rp(\j) = Rp(\j) + mjp (j = 1,..., n),

W=Rp(p).
where mi , . . . , mn € Z are so taken that

(2.6) 0^^^(A,)-(n-l)^(p)<p
.7=1

and fixed. It follows from (2.3) and (2.5) that

rp(P(^p))=rp{P(Rp(\)^Rp(p))),

where Rp(\) = (fip(Ai), . . . ,Rp(\n))' Consider the intermediate system
P(Rp(\), Rp(p))) in stead of the reduced system 7p(P(A, p)) = P(A, p)p. For
simplicity we use A i , . . . , An, p for f lp(Ai) , . . . , Rp(\n), Rp(p), respectively.
Thus we consider the system

^(A,p) (x-T)Y/=A(\,p)Y,

(2.7)
( AI Ai — p " ' Ai — p\

^2 — p \2 " ' \2 — p
/., \

T= • • • ,A(A,p)=

\ An - p An - p • . . An /

where we have assumed that

(2.8) A i , . . . ,An , p € Z , 0^^p'<p,

noticing that p ' defined by (1.5) satisfies the above inequality because of
(2.6).

In §2.1 we reduce the condition that P(A, p) has n independent poly-
nomial solutions, to a block triangularizability of some linear transforma-
tion L. §2.2 and 2.3 are devoted to the calculation of the elements which
would become zero by the block triangularizaton of L. From the condition
that these elements are zero, we extract conditions on A i , . . . , An, p in §2.4.
Then finally in §2.5 we prove Theorem 2.1.



782 YOSHISHIGE HARAOKA

2.1. We denote by y^JT) the vector space of n-column vectors with
entries in a field K. Set

(2.9) Y = VQ + v^x + • • • + ̂ p-i^-1, v, e ̂ (Q^)) (j = 1 , . . . , n),

and put it into the system P{\,p). Comparing the coefficients of the same
power of x in both sides, we obtain

f [ A - ( p - l ) ] ^ _ i = 0 ,
[A-(p-2)]^_2=(p-l)r^_i ,

. [A-(p-3)h,-3=(p-2)r^_2,

[A-l]z;i=2T^
Avo =Tv^

where we have denoted A(A, p ) simply by A.

As we have seen in §1, (1.4), the eigen values of A are p of multiplicity
n - 1 and p ' . First suppose that p > //. Then from (2.10) it follows that

VP-I = ' • • = Vp+i = 0,
vp e Vp,

Vp- i , . . . , Vp'^\ : uniquely determined by Vp,

and

(2.11) ^-p^p^G^+i^v+i,
where Vp denotes the p-eigen space of A. Since p ' is an eigen value of A,
(2.11) requires that Tv^^, which is uniquely determined by Vp e Vp, is
contained in the space spanned by the column vectors of the matrix [A-//].
Now we note a lemma from linear algebra.

LEMMA 2.1. — Let A be an n x n matrix with entries in a field
K. Suppose that A has just two distinct eigen values pi and p^, of some
multiplicities, in K, and that A is diagonalizable. Let Vi be the pi-eigen
space of A. Then the space spanned by the column vectors of the matrix
[A — p^[ coincides with V\.

Hence we obtain from (2.11) that

Tvp^i e Vp.
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Now by (2.10) we have

(2.12) (// + l)Tv+i = (// + l)(p' + 2). • • p • Li^,

where

(2.13) Li = T[A - (p' + l)]-1^ - (p' + 2)]-^... T[A - (p - l)]-^.

If L^Vp 6 Vp for any Vp € Vp, then the system P{\,p) has n linearly
independent solutions of the form in (2.9). Thus we have proved : The
system P(A,p) has n linearly independent solutions of the form in (2.9) if
and only ifVp is an invariant subspace ofLi.

Next suppose that // > p. In a similar manner we obtain : The system
P(A, p) has n linearly independent solutions of the form in (2.9) if and only
ifVp' is an invariant subspace of ̂ 2, where Vp' is the p'-eigen space of A,
and

(2.14) L2 = T[A - {p + l)]-1^ - (p + 2)]-^.. • T[A - (p' - 1)]-^.

Noticing that Li {z == 1,2) is invertible, we see that the above
statements hold if we replace Li by Li~1 (i = 1,2). For later convenience
we use Li~1. Since the matrix P denned in (1.3) diagonalizes A as (1.4),
we can restate the above result in the following proposition.

PROPOSITION 2.1. — The necessary and sufficient condition that the
system ^(A, p) has n linearly independent polynomial solutions of degree
at most p — 1 is,

(i)ifp>//,

(2.15) P- lLl- lP= *
*

<0 • • • 0 */

(ii)iiy>p,

(2.16) P-1L2~1P= *
0

* • • • * *,

where P, L\ and L^ are defined in (1.3), (2.13) and (2.14), respectively.
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2.2.

Notation.

(i) Let i e N and m C No. For ^ i , . . . ,^ e No satisfying 21 + • • • +^ ^
m,

/ m \ _ _______m\_______
Vi • • • ^7 i\\'" i(,\(m - zi - ... - ̂ )!'

(ii) For a € C and % e N,

(^0)=1,
(a, i) = a(a + 1) • • • (a + i - 1).

We introduce a polynomial which plays a central role in this section.

DEFINITION 2.1. — Using- the above notations, we define a polynomial
^j 'm (/^ u)ofu=(u-^,..., Ut) with parameters ^ = ( /^ i , . . . , ̂ ) by

(2.17) ̂ m)^) = ^ G m , ) n^+^-^)^i11 ••<^.
ii4---+^=m v 1 i / A;=l
ZI,...,^€NO

for j = 1,..., i, where 6kj denotes Kronecker's delta.

Let p > p ' . Recalling Proposition 2.1, (i), we proceed to obtain the
(n,j)-entry of the matrix

(2.18) A^P-1^-1?

for j = 1,.. . , n-1, where P and Li are as in (1.3) and (2.13), respectively.

PROPOSITION 2.2. — Let p > p ' . Then, for j = l , . . . ,n - 1, tAe
(nj)-entry of the matrix M defined by (2.18) is

(2.19) -^,^-i^-i)(^^^

where

m = p - p' > 0,

(2.20) ^ = ( /^ i , . . . , /^_i), ^ = \j, - p (k = 1,..., n - 1),
n=(^i,...,u^_i), ^ =tk~1 -tn~1 (fc=l,...,n-l).
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Proof. — Using (1.4), (2.13), (2.15) and (2.18), we obtain

M=P-1L^1P
(2.21) = P-^T-^A - (p - i)]r-1... r-^A - (?' + i^r-1?

= Q[l - mN]Q[2 - mN]Q ' . • Q[(m - 1) - mN]Q,

where m = p — p',

785

(2.22)

and

(2.23)

Define Qi by

(2.24)

Q = p-^r-1?

N =

0 = 0 i + ^.-^
then by (2.7) and (2.20) we obtain

ui

(2.25) Oi=P.-1
P.

^71-1

Put (2.24) into (2.21) :
(2.26)
M = (0l+^-l)[l-m^](0l+^-l). • . (0l+tn-l)[(m-l)-m^](0l+^-l).

In general, let U be a J^-module, K being a field, of matrices in M(n; K)
whose (n,j)-entries are 0 for j = 1,..., n - 1. For B\,B^ € M(n; K), we
denote Bi = B^ mod ̂  if Bi - B^ e U. The following holds.

LEMMA 2.2. — N being as in (2.23), for any B e M(n; K} and any
s e K ,
(2.27)

(B + 5)[1 - m7V](B + s)[2 - mN}(B + s) ' ' ' (B + 5)[(m - 1) - mN](5 + s)
= B[l - mN}B[2 - m N \ B ' ' ' B[(m - 1) - mN]B mod U

holds.
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Define M\ by

(2.28) Mi = Qi[l - mN}Qi[2 - m7V](9i • • • Qi[(m - 1) - mN]Q^

then by (2.26) and Lemma 2.2 we see that the (n,j)-entry of M is equal
to the (n, j)-entry of Mi for j = 1,.. . , n — 1.

By (2.25) and (1.3), we can rewrite Qi as

(2.29)

with

(2.30) Q2 =

Qi=-Q2+Q3m

^lUi • • • P.lUn-1 ^10 \

^n-lUl ' " lln-lUn-1 ^n-1

\ -Ui • " -Un-1 -0 /

/HI

Q3=

P'1^1 \

Un-1 ^n-lHn-l

0 0 /

where ^k and Hfe are defined in (2.20), and
n-l

(2.31) 0=^^Uk.
k=l

For later use we introduce more notations :
n-l

(2.32) 0^=^^
k=l

( ^lUi' • • • ^l^n-l1 1^10^ \

(2.33) Q^=
l^n-lUl' ' " ^n-lUn-l' l^n-10^

-Un-11 -0^ j

^lU^ \

\ -Ul

(u^

(2.34) Q^ =
Un-11 f.in-lUn-11

\ 0 • • • 0 0 /

for i = 1,2,.. . . In particular Q^ = Q^ and Q^ = Q^ . Between TV, the
Q^ s and the Q^ s, there are several relations.
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LEMMA 2.3. — For any n x n matrix B and any i,j e N,

Q^ ' B = 0 mod U,

N ' Q ^ = 0 ^
O^'O^-o,
0 3 - 0 2 - 0 ,

Q^'Q^-Q^\
Q^ .TV.O^ =-e^Q^.

Using this lemma, we obtain

LEMMA 2.4.

Mi = -^02(1 - AQ(02 + Qs)(2 - ^V)
m
x (Q2 +03)-- (02 + 03)((m - 1) - 7V)(02 + 03) mod U.

Then set

(2.35) M^ = 02(1 - A^)(02 + 03)(2 - 7V)(Q2 + 03) • • •
(02+03)((m-l)-AO(02+03).

For I = ( % i , % 2 5 - - - ) ^ No00 with z^ = 0 for any sufficiently large /c, we
define

00

\^ I
1k,

(2.36)
i^ii-E^fc=i

00(9J= n^)"'
A;=l

By Lemma 2.3, we see that M^ has the following expansion :

(2.37) M^ = ^ c^O^^.
||J||+fc==m

The following recurrence formulas of the c^'s are shown by using (2.35)
and Lemma 2.3.

LEMMA 2.5.
(m+l) _ V-^ (m) \f\\T\\—m

CI1 ~ /. CJk ' 1I \\l\\ — m1- V c(m) if— 2^ Jk ^ u

J+lfe=^
(?n+l) (m) . c 1 1 7 - 1 1

^+1-11 /11= "•^Ln-iiJii. if 1 1 ^ 1 1 <m,
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where 1k denotes the element of No00 with the only non-zero entry 1 in
the k-th position.

In the above we have shown that

M = Mi = ^-M^ mod U.m

Therefore it suffices to show that the (n,j)-entry of M^ is —Uj^71"1'771"
(/A; u) for j = 1,..., n — 1. Taking account of (2.37) and (2.33), we prove
that

(2.38) E ^e^-u^^-u^-^-^^u)
||J||+fc=m

for j = 1,... ,n — 1 by induction on m. When m = 1, M^ = Qa? and
hence (2.38) follows from (2.17), (2.30) and (2.37). Suppose that (2.38)
for every j € {1, . . . ,n — 1} holds for m. Then, by Lemma 2.5, for every
j G { 1 , . . . , n — 1} we have

E ^r1^-^)
||J||+fc=m+l

- V^ r^^fi^ 7 / ^4 - \^ ^+1) nl( m+l-\\I\h
~ 7 . cn u (~U3)^~ 7 ^ CJ,yn+l-||J||l7 (< ^ )

||J||=m \\I\\<m

= E ^J+lfc(--^)+^ E ^^(-^/+1)
||J||+A;=m HJ||+A;=m

=-^[ E ^^W+m E c^/]
||J||+A;=m ||J||+fe=m

--^•I E ^J(^lfe+•••^-l^-lfe)+m ^ ^)^/]
||J||+A;=m ||J||+A;=m

[ /•(n— l,m—l) / \ ,
= -Uj ^lU^ / (^ ;^ )+• • •

+ ̂ -i^-i^-i1^-1^^ ̂ ) + m^71-1'7"-^ (/x; u)]

= -^-^M,

where the last equality follows from Lemma 2.9 which will be given later.
Thus (2.38) holds for m + 1. This completes the proof of Proposition 2.2.

Q.e.d.

2.3. Here we give a similar proposition to Proposition 2.2 when p ' > p.
Notice that, in the following, we use several letters common to §2.2 in
different senses.
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Let p1 > p, and set

(2.39) M = P-^-1?,

where P and 1/2 are defined in (1.3) and (2.14), respectively.

PROPOSITION 2.3. — Let p ' > p. For j = 1,..., n - 1 the (j, n)-entry
of the matrix M defined by (2.39) is

(2.40) L^^-^^.^
nv

where

m = p' - p > 0,

(2.41) /^= (^ i , . . . ,AAn- i ) , p.k=P-\k ( fc== l , . . . ,n-l) ,
u=(ni , . . . , -^_i ) , uk =tk~1 -tn~1 ( f c = l , . . . , n - l ) .

The proof is similar to (and somewhat simpler than) that of Propo-
sition 2.2, and is omitted.

2.4. Now we study common zeros of the polynomials ̂ '^'s.

Let K be a field of characteristic 0, and let £ e N, m e No. Define
(J^)* C K^ by

(K^y = {u = (ni , . . . , ue) € K^ \ !AI, . . . , Ui, 0 are mutually distinct}.

We consider ^^(/^n) as a polynomial in (^u) e K^ x (^)*.

PROPOSITION 2.4. — Consider the system

(2.42) ^'m)(^^=•••=^m)(^^)=0.

(i) When m < £, (2.42) has no solution in K^ x (^)*.

(ii) When m ^ £, (2.42) holds if and only if ^ = (/AI, . . . , /^) satisfies
the following :

(2.43)

-/^i,...,-^ eN,
^

0 ^ m + V^ jL&j; s$ m - (,.
j=i
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To prove this, we need two lemmas. Let m ̂  1.

LEMMA 2.9.

^m)^; u) = (^ + m)^5—1^; n) + ̂  /^4''m~l)(^ n)
W

fo r j= l , . . . ^ .

This is shown by comparing coefficients of monomials of the uj 's in
both sides.

LEMMA 2.10. — For s= !,...,£- 1,

(2 44) [us^-^^u) - u^-^^u)}^.^..^,^

=^-u^-l-m-l\^^f-ue)

where ^! = (/^i,..., ̂ -i) and u' — u^ = (ni — i^,..., un-\ — u^).

Proof. — We show the lemma for 5=1 . The assertion for any s is
obtained similarly.

Expand the right hand side of (2.44) as

/ \^(^-l,m—l)/ / / \(HI -ue)^ )^ \u -u^)

= ^ ( • . . . • ) (^1+ l ^ ^ l ) (^2^2)• "(^-l,^-l)
ii+...+^-i=m-l v 1 "" £~l/

x (ni - n^^^ - ueY2 • • • (^-i - ̂ )

^ ^...^^•••u^,
J'i+"-+j'<==yn

then we obtain

E
^l^Jl—1^2^j2,...^<-l^j£-l

X (/^i + 1, 2l)(/^2, ^2) • • • (^-1, ̂ -l)(-l)^.
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On the other hand, ̂  being -(/^i + • • • + ̂ _i + m), expand the left
hand side of (2.44) as

^(^,m-l)/ N ^,m-l)/ \
Hl̂  ' \^U)-U^\' \^U)

= S (^ ... ^ _ jO^l+Ml)^^) ' ••(^-l,^-l)
^i+'"^=7n—l v t~ i /

x (-(/^i + .. • + ̂ -i + m), ̂ HI^+W • • • u^

~ ^ [i . . . ^ _ ) (^l^l) (^2^2)-- - (^-l,^-l)
Z1+-- •^=771—1 v <'—1/

x (-(/^i + • • • + ̂ -i + m) + 1, ̂ )^i11 • • • u^-lu^+l

= E ^...^lJl•••^.
Ji+---+j'^=m

Note that ^oj^.-.j^-iO = 0, so that we assume j\ ^ 1 when jn = 0 and j^ ^ 1
when ji = 0. Then the coefficients ^ji...j/s are obtained as follows :

^i...^-i0 = [ • _ ^ , _ . . _ ](^i +l^'i -l)(^2,j2)' ••(^-1,^-1),

, ^ m-1 \ . .
.̂..̂  = I • . . 1 (/^2^2)---W-l,^-l)V2 • • • 2t-\ J e - I/

x (-(/^i + • • • + ̂ -i + m) + 1,^ - 1),

and when jf'i > 1, ̂  ^ 1,

^—G,-^1..^)^^^1-1)^2'^--
(/^-i,j^_i)(-(^i + • • •+^-1 +m),^)

^ m-1 v ^- . • • 1 o^i^i • • •vi • • • ^-i ^ -1/
(/^_i^_i)(-(^i + • • • + ̂ _i + m) + 1,^ - 1).

SUBLEMMA.

( P ' l J l ) ' ' ' (^-l^-l)(^l + • • • + ̂ -1 + J 1 + - - - + J£-1J£)

= E ( ^ \ )(^l^'l +^l)---(^-1,^-1 +^-l).\ rC "| ' " * Kf — 1 /
A;i+...+^-i=^ v i ' i/

This sublemma is shown by induction on j^.

Use Sublemma to reduce every &ji...^ to c^...^,, then the lemma
follows. Q.e.d.
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Proof of Proposition 2.4. — Suppose that m > 0. Then from Lemma
2.9 we obtain

/ /.(^.m) / \ »/^ ' '(wu)\

^>m)^;")

(2.45) ^M/
/ A A i + m ^2

^i ^2 + m
^ \ /^l^1"1^;^

^ U^'^^U)

^2\ /^i ^4-m/ U^-1^;^

Using the notation in (1.2), we see that the coefficient matrix in the right
hand side of (2.45) is *A(/^ 4- m, m), where p, + m = (^ 4- m, . . . , ̂  + m).
As we have seen in §1.0, (1.4), the eigen values of ^A^+m.m) are m and

^ /^ + m. Since m ^ 0, the left hand side of (2.45) is zero if and only if

one of the followings holds :

ui^'"1-1)^) = ... = u^-^^u) = 0,

or

{ /^i + • • • ̂  4- m = 0,
^m-l)(^^)=...=^m-l)(^^).

By Lemma 2.10, the latter condition is equivalent to

(^-^-l'm-lV;u/-^) =•••= (^-i-^-^-V;,/-^) = 0

with ^i + • • • ̂  + m = 0. Noting that u = (ui, . . . , ui) € (J^)*, we obtain

(2.46)

or

(2.47)

^m-l\Wu)=...=^'m-l\f,;n)=0,

/.LI + • • • /^ + m = 0,

(^u7-^)^..-^771-1)^;^-^).^-^-v
First we show the assertion (i) of the proposition by induction on i

and m. Assume that (i) holds for (, - 1 and for every m less than £ - 1. We
shall prove (i) for t and for every m less than L For m = 0, every ̂ '^(^ ?z)
is equal to 1, so that (i) holds. Assume that (i) holds for m-1, and consider
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the system (2.42) for (^,m). As we have observed in the above, from (2.42)
we obtain (2.46) or (2.47). By the induction assumption on m, we see that
(2.46) has no solution in K^ x ( K ^ ) * . Noting that t — 1 > m — 1, we see
that (2.47) has no solution in K^~1 x (^-1)* by the induction assumption
on £. Hence (2.42) has no solution in K^ x (^)*, and this completes the
induction.

Next we prove the assertion (ii) by induction on (,. For {. = 1 and
m ^ 1, (2.42) is reduced to

^m)(^^)=(^+l,m)nlm=0,

so that we have (/^i + l,m) = 0 since u\ -^ 0. Thus (ii) holds in this case.
Assume that (ii) holds for £ — 1, and consider the system (2.42) for (^,m)

t
with m ^ £. Denote ^ fjtj by M. Again by the above argument, we see

j=i
that (2.42) holds if and only if (2.46) or (2.47) holds. From (2.47) and the
induction assumption, we obtain

M+m=0,

-/^i,... ,-/^_i e N,
n-\
^ p.j + m ̂  0,
j=i

which is (2.43) with M+m = 0. From (2.46) we obtain (2.46) for (^,m-2)
or (2.47) for (^-l,m-2). The latter gives (2.43) with M+(m-l) = 0, and
the former gives (2.46) for (^,m-3) or (2.47) for {£- l,m-3). Proceeding
recursively, we have (2.43) with M + m = 0 , l , . . . , m - ^ and (2.47) for
(£,£ - 1). Using the assertion (i), we see that (2.46) for (£,£ - 1) has no
solution. Hence (2.43) with M+m = 0,1,. . . , m—i exhaust all possibilities,
which establishes the assertion (ii). Q.e.d.

Now we return to the system P(A, p). If we define u = ( - U i , . . . , Un-i)
by Uj = tj~1 - tn~1 for j = 1,... ,n - 1 as in (2.20) or (2.41), we see that

^=(m,...,^-i)e(C71-1)*,

since t i , . . . ,tn are distinct. Then from Propositions 2.1, 2.2, 2.3 and 2.4,
we obtain the following

PROPOSITION 2.5. — The necessary and sufficient condition that the
system P(A, p) has n linearly independent polynomial solutions of degree
at most p — 1 is,
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(i) i f p > p f ,

(2.48) \ j < p forj=l,...,n,

(ii)iiy>p,

(2.49) p ^ X j forj=l,...,n,

n
where // == ̂  A^ — (n — 1)^.

j=i

Proof. — Suppose that p > //, and set m = p — p1. Then by
Propositions 2.1 and 2.2, we see that the condition is

/-(n—l.m—l)/ \ /-(n—l.m—l)/ \ /^^ ^^n)=. . .=^_^ ' /(^ /a)=0,

where ^ = (Ai — p , . . . , An-i — p ) ' Applying Proposition 2.4 to this system,
we obtain

\j < p forj=l,...,n-l,
n-l

o^I^--'0)4-^-^-1)-
J=l

(Note that every Aj and p are integers.) From the last inequality it follows
\n < P ' Thus we obtain (2.48).

Next suppose that p ' > /?, and set m = p ' — p . By Propositions 2.1
and 2.3, the condition is reduced to

^(n—l,m)/ \ /.(n—l.m)/ \ r\/^i ^(^n) = •••=^-i^_i ' ^n)^,

where ^ = {p — Ai,.. . , p — An-i). Similarly to the proof of Proposition 2.4,
from this system we obtain

p ^ X j forj=l,...,n-l,

0^^>-A,)+Oc/-p) .
j=i

Then p ^ \n follows from the last inequality, so that we obtain (2.49).

Q.e.d.

2.5. Proof of Theorem 2.1. — Recalling §2.0 and 2.1, we see that,
P(A, p) has n polynomial solutions of degree at most p— 1 which are linearly
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independent over the field of constants, if and only if so does P(A, p)p. The
former assertion is reduced to conditions on A i , . . . , A^, p by Proposition 2.5.
Noting that there we have used A i , . . . , A^ p for Rp(\i),..., Rp(\n), Rp(p),
respectively, and using (2.5), we rewrite the conditions in the proposition
as

(i)
n

(2.50) Rp(p) > ̂ (Ap(A,) + m,p) - (n - l)Ap(p),
j'=i

(2.51) Rp(\j) + mjp < Rp(p) (j = 1 , . . . , n); or

(ii)
n

(2.52) E(^(^-) + m^) - (n - WW > W^
j=i

(2.53) Rp(p)^Rp(\j)+m,p ( j = l , . . . , n ) .

First we study the case (i). We show that rrij = 0 for every j. From
(2.3) and (2.51) we obtain

p > Rp(p) > Rp{\j) + rrijp ̂  m^p,

so that 1 > rrij. Set

/ n \
m = Rp(p) - (^(Rp{\,) + m,p) - (n - l)Rp{p) ,

S=i /

then we obtain

(2.54) 0 < m < p

from (2.3), (2.6) and (2.50). Now (2.51) and (2.54) yields

0 < Rp(p) - {Rp(\j) + mjp) < p.

Hence we have

-p < Rp(p) - Rp{\j) < (mj + l)p,

so that rrij > -2. Thus m^ = 0 or -1 for every j. Set

J = {j C { ! , . . . , n} | rrij = -1},
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and denote the cardinal number of J by i. If j ^ J, rrij = 0 and then
we have Rp(p) - Rp(\j) > 0 by (2.51). Since Rp(p) ^ m by (2.50) and
Rp(Xj) < p by (2.3), in general we have Rp{p) - Rp{\j) > m - p. Using
the above, we obtain

n
m = "EWP) - (^p(^) + rn,p))

.7=1
n

=E(JR^)-JR^))- E^-^.=i v=i /
= E )̂ - ̂ (^)) + E^p^) - R?^+ ̂

j'eJ W
> i(m - p) + ip

= ̂ m,

and hence 1 > -^, for m > 0. Since 0 ^ t ^ n by the definition, thus we have
i = 0; namely mj = 0 for every j. Put mj = 0 into (2.51) and (2.6), then
we obtain (2.4 : ii).

For the case (ii), in a similar manner we obtain mj = 0 for every j .
Then (2.4 : i) follows from (2.53) and (2.6) with rrij = 0.

Conversely, if (2.4 : i or ii) holds, we can take mj = 0 for every j in
order that (2.6) holds. Then the condition in Proposition 2.5 follows from
(2.4 : i or ii), so that the system 'P(A,p), and hence the system P(A,p)p,
has n linearly independent polynomial solutions. This completes the proof
of Theorem 2.1. Q.e.d.

2.6. Here we prove Proposition 1.6 in §1.2 by using the results which
we have obtained in this section. We consider the Pochhammer system
P(\p) with parameters (A,/?) = ( A i , . . . ,An,p) 6 C7^1 satisfying (1.1).
Direct computation shows the following

LEMMA 2.11. — Suppose that

Ai - p ̂  0, p' -Ai -p^O, ^^-(n-l^O.
1=1

Then by the change of the independent variable

1
X —> U\ U = ———— + 5i

x —i\
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and by the gauge transformation

I 'pl
\2 ~ P P — AI

Y ^ Z : Z=(u-s^Y .

\Xn-P P-AI /

P(A, p) is transformed into the system

797

V,

Wp):

where

(n-5)tI=A(A',p)Z,

51

5'= +Sl ( l=2 , . . . , 7 l ) ,
ti-ti

V^p-p^,...^).

Proof of Proposition 1.6. — We may assume that Ai e Z (i.e. j = 1).

First we suppose that Ai - p -^ 0 and p ' ^ 0. Then by Lemma 2.11 it
suffices to show that u = oo is an apparent singular point of

W^):
where

(^-5)^=A(A',p)Z,

(2.55) Y^A'i,...^,), \[=p-p\ A^.=A, (^2).

We set Ai = A(A',p). The eigen values of Ai are p of multiplicity n — 1
and p — Ai. Then -u = oo is apparent if and only if there are n — 1 solutions

00 . 00

of the form up ̂  ViU~^ and a solution of the form ^-A1 ̂  ^u~1 which
1=0 i=o

are linearly independent over C.

When Ai = 0, the eigen values of A\ are p of multiplicity n, and
Ai 7^ pjyi by p' ^ 0. Thus Ai is not diagonalizable, and hence u = oo is
not apparent.

Suppose that Ai > 0. Set
00

Z=upY^v^u-\ Vi&Vn{C),
i=0
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and put it into ^(A'.p) to obtain

[Ai - p]vo = 0,
[Ai - (p -z )h=( (z - l ) -p )^_ i (^1).

Recalling §2.1, we see that u = oo is apparent if and only if, for any p-eigen
vector VQ of Ai, ((Ai - 1) - p)S'z'Ai-i which is uniquely determined by VQ
becomes again a p-eigen vector. Note that

((Ai-l)-p)^_i

(2.56) = (-?)(! - p) ... ((Ai - 1) - p)5[Ai - (p - (Ai - I))]-1

xS[A, - ( p - (Ai -^-^..^[Ai - (p- l)]-i^o.

If p(p - 1) • • • (p - (Ai - 1)) = 0, then clearly the left hand side of (2.56)
lies in the p-eigen space Vp of Ai. Otherwise we can follow the arguments
in §2.2 and 2.4 to obtain

P- \'j C N, j = l , . . . ,n .

By virtue of (2.55) it follows that

p ' G N , p - A . G N ( j ^ 2 ) .

Hence we obtain the conditions

(a) p C Z, 0 ^ p ^ Ai - 1, or
n

(b) p - A , € N ( j ^ 2 ) , Ai + ̂ (A, - p) > 0.
J=2

When Ai < 0, similar argument and the assumption p ' -^ 0 yield the
conditions

(c) p € Z, Ai < p ^ -1, or
n

(d) Aj - p 6 No (j ^ 2), Ai + ̂ (Aj - /)) < 0.
J=2
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Secondly we suppose that Ai - p -^ 0 and p ' = 0. As Lemma 2.1'1, by
the transformations

x —> u : u
x — ti

/ 1
A2 - P P - AI

Y -. Z : Z = up

\An - p

V(\p} is transformed into

(u-S)dz=BZ^du
(2.57)

where

y,

P-Ai /

/O \

00 —

\ S n )

B =

The system (2.57) is reducible. By setting

Z =

S2

/ Z l \

Z-l ( z 2 } ( " }' z - ( • • \ • s • = ( •• }•
\Zn) \ Sn

, Si = -——- (i ̂  2)ti —1\ ;

I P 1 • • • 1 \

0 X'2 " ' \2— P

\ 0 \n - P • " \n )

Vn/

Bi=
^n- P

Aa -P'

An

it is decomposed into

(2.58)

and

(2.59)

(u - S,)^ = BiZidu

z\ = c('u)'up,

Up+ l-,£=22+•••+•^ndu
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(apply the method of variation of constants). Then u = oo is an apparent
singular point of (2.57) if and only if it is an apparent singular point of
(2.58) and, for any solution Z\ of (2.58), the solution z\ of (2.59) has no
logarithmic term at u = oo.

When Ai = 0, B is not diagonalizable, and hence u = oo is not
apparent.

Suppose that Ai > 0. Set

/^2\

Z,=u^ViU-\ Vi= : eV^C),
i=0 \ -,,. /\^%n/

and put it into (2.58) to obtain

[Bi - p]vo = 0,
[5i - (p - i)]vi = ((z - 1) - p)5i^-i (z > 1).

In particular VQ is />-eigen vector of Bi, and, noting that Ai 7^ 0, from it
we obtain

(2.60) VQ2 -h • • • + VQn = 0.

Now by a similar argument as in the first case, we see that u = oo is an
apparent singular point of (2.58) if and only if

(e) p C Z, 0 ^ p ^ Ai - 1, or
(f) p - A , € N (^2)

holds. We assume (e) or (f). Then, by virtue of (2.60), we have
rlr
-=^-P-W•••+^)du

= iT1^-^ + • • • + Von) + (^12 + • • • + Vin)u~1 + • • •}

=0(^-2),

which shows that the solution z\ of (2.59) has no logarithmic term at
u = oo. Thus the conditions (e) and (f) are sufficient.

Suppose that Ai < 0. Set

/^2\

Z^u^Y^ViU-^ Vi= : eV^C),

\Vin
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and put it into (2.58) to obtain

(261) [Bi-(p-\i)]vo=^
[Bi - (p - Ai - z)h = ((z - 1) - (p - Ai))^-i (z ^ 1).

We see that u = oo is an apparent singular point of (2.58) if and only if

(g) P € Z, Ai < p ^ 1, or
(h) A , - p e N o ( j ^ 2 )

holds (where we have used Ai ^ p). Assume (g) or (h). Now the integral of
the equation

dc
du=u~xl~^z2+•••+z^

has no logarithmic term at u = oo if and only if

^-Ai2+"-+^-Am=0.

Then we have

[Bi - p]v-^ = 0,

and it follows from (2.61) that

0=-(p+l)^-A,-i
==(- l ) - A l (p+l ) (p+2) . . . (p-Al)5 l

x[Bl-(p+l)]-15l•..5l[Bl-(p-Al-l)]-15^o,

which yields

( p + l ) . . . ( p - A i ) = 0 .

Thus the condition (g) is sufficient. To sum up the above, in the second
case we obtain three conditions (e), (f) and (g).

Thirdly we suppose that Ai — p = 0. In this case the system P(A, p)
is reducible, and is decomposed into

(x~tl)d^=pyl

and

( >2-P\

(2.62) (a;-Ti)^=Biyi+ : yi,
UX j

>n-P,
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where we have set

/yi\
V2

Y =
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2/2 \ /^2

Yi = | ; | , Ti =

2/n,

Bi=

A2

<An -P

A2-P '

A.

Then we have

yi =c^x-t^p.

Applying the method of variation of constants to (2.62), we see that Vi is
holomorphic at x = ti if p ^ 0, and that Vi has logarithmic term at x = t^
if P = -1. Thus we have the condition

(i) P=\i ̂  0.

Suppose that p = Ai < —1. Set

00

Y=(x-t,)xl^vi(x-t,)\V i [ X - t - i , '?;,•=

^=0

/^1\
^2 e y^c),

and put it into P(A, p) to obtain

>i(ti-T)vo=0,
[A - (Ai + i)}v, = (Ai + z + l)(^i - T)^+i (z ^ 0).

Then we have

^oj =0 (^ = 2 , . . . , n), vn=0 (z> 1).

Now we set

/
0̂ Vi2 tl-t^

vo = \ : ' <= : (»>!), T2 =

^i -^
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Then it follows that

/A2 - /A

: =(Ai+i ) r2^ ,
\>n-p)

[Ai - (Ai + z)K = (Ai + i + l)T2^+i (z ^ 1).

This system has a solution if and only if

[Ai+l]^_i=0.

Thus one of the eigen values of Ai belongs to {—1, — 2 , . . . , Ai + 1}, so that
it must be //, and v ' / _ \ is a p'-eigen vector of Ai. This yields, by a similar
argument as above, the condition

n

(j) A, - p C No 0 ^2) , Ai + 1 ̂  Ai + ̂ (A, - /?) ^ -1.
J=2

Thus in the above we have obtained nine conditions : (a), (b), (c) and
(d) with Ai - p ^ 0 and p ' ^ 0, (e), (f) and (g) with Ai - p ^ 0 and // = 0,
and (i) and (j) with Ai — p = 0. It is easy to see that

(d )o r ( j ) ^ (1.18 :i),
(b) or (f) 4==^ (1.18 : ii),

(a), (e) or (i) <=^ (1.18 : iii),
(c )or(g) ^ (1.18:iv),

and this completes the proof. Q.e.d.

3. From "locaF to "global".

We consider the Pochhammer system P(A, p) of rank n.

First we remark that, for our Pochhammer system ^(A,?), the
following three conditions are equivalent :

(i) for almost all primes p, P(A,p) has zero ^-curvature,

(ii) for almost all primes p, the reduced system 'P(A, p)p modulo p has n
polynomial solutions in Kp[x] which are linearly independent over Kp(xp),
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(iii) for almost all primes p, the reduced system ^(A, p)p modulo p has
n polynomial solutions in Kp[x] of degree at most p — 1 which are linearly
independent over Kp^x^.

This will be shown similarly as in Katz [9, §6].

The following is the main result of this paper, and is an affirmative
answer to the Grothendieck conjecture for the Pochhammer system.

THEOREM 3.1. — The following conditions are equivalent :

(i) For almost all primes p, the Pochhammer system P(A,p) with
parameters ( A i , . . . , Ayi, p) has zero p-curvature.

(ii) Any solution of the Pochhammer system P(\ p) with parameters
( A i , . . . , An, p) is an algebraic function.

Proof. — Owing to the above remark and Proposition 0.1, it suffices
to show that, if the reduced system P(A,p)p has n linearly independent
polynomial solutions of degree at most p—1 for almost all primes p, then the
monodromy group of ^(A, p) is finite. By Theorem 2.1 the former condition
is reduced to that, for almost all primes p,

n

(I)p Rp(p)^Rp(X,) ( j= l , . . . , n ) , J^Rp(\,)<(n-l)Rp(p)+p
j=i

or

n

( I I ) p Rp(\,) < Rp(p) ( j = l , . . . , n), (n - l)Rp(p) ^ ̂  Rp(\,)
j=i

holds. Then we suppose that (J)p or { I I ) p holds for almost all primes p.

We quote a lemma from Katz [9, (6.5.2), (6.5.3)].

LEMMA 3.1. — Let a € Z, D G Z with D -^ 0.

(i) If OLJ D ^ Z, (p, D) = 1, pA = 1 (D) and p > |a|, we have

1? f-^ _ /^Y a
p R P [ ~ D ~ ) - \ ^ ~ / ~ p D '
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(ii) For each invertible element A in Z/DZ, we have the limit formula

(3.1)

^).^z,
lim 1^ (-")=,

P^TD^ ^
0 if^Z.^O,

1 - f^Z,5>0.

Let D denote the common denominator of A i , . . . , An, p.
First assume that P(A,p) is generic; i.e.

\j, p, Xj - p ^ Z for j = 1, . . . , n.

Take A e Z invertible in Z/DZ. Then (I)p or (JJ)p holds for infinitely
many primes p with pA = 1 (D). Suppose that (J)p holds for infinitely
many such primes p. By the limit formula (3.1) we obtain

n

(-Ap)^(-AA,) y= l , . . . , n ) , ^(-AA,)^(n-l)(-Ap)+l,
j=i

and hence
n

<AA,) ^ (Ap) (j = 1, . . . , n), (n - l)<Ap) < ̂ (AAj).
.»=!

From A, — p ^ Z it follows that

(3.2) <AA,)<(Ap) (j=l,...,n).
n

We shall show that (n - l)(Ap) < ^ (AAj). Suppose
j'=i

(3.3) (n-l)(Ap)=^(AA,).
j=i

By (J)p and Lemma 3.1 (i), we have

(n-l)((Ap)-^<^(<AA,)-^)
J=l

for sufficiently large p with pA = 1 (D). Using (3.3), we have

)f<_Y^,-<-')- <-E-.pJ=l
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and hence
n

(3.4) ^A,<(n- l )p .
j=i

Use -A in stead of A, then for infinitely many p with -Ap = 1 (D) ( I I ) p
holds; in fact, if ( I ) p would hold, by the limit formula (3.1) we should
obtain

(A^(AA,) ( . 7= l , . . . , n ) ,

which contradicts to (3.2). Then we have

(n-l)((Ap)+^^((AA,)+^).

By using (3.3), we obtain

n

(n- l )p<^A, ,
j=i

which contradicts to (3.4). Thus we have proved that

(3.5) (AA,)<(Ap) ( j = l , . . . , n ) , (n - l)(Ap) < f^AA,).
j=i

If (JJ)p holds for infinitely many p with pA = 1 (D), in a similar manner
we obtain

n

(3.6) (Ap)<(AA,) ( j = l , . . . , n ) , ^(AA,) < (n - l)(Ap) + 1.
.7=1

Hence for every A C Z invertible in Z/DZ, (3.5) or (3.6) holds, which
implies that the monodromy group of P(A,p) is finite (Theorem 1.2).

Secondly we assume that

A,, p ^ Z ( . 7 = l , . . . , n )

and

A/, - p e Z

for some k.
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LEMMA 3.2. — Let r e Q, n e No. For any sufficiently large prime p,
we have

Rp(n^r) =n+Rp(r).

Suppose \k - p = rik ^ 0. Then by Lemma 3.2, for sufficiently large
p, we have

Rp(\k) = Rp{\k - P + p) = rik + Rp(p),

and hence

Rp(p) ^ Rp(\k).

Then, since ( I I ) p does not hold, (J)p holds for any sufficiently large p. The
limit formula (3.1) for A = 1 gives

( ^ ) ^ ( P ) ( . 7 = l , . . . , n ) ,

and that for A = —1 gives

(P )^ (A , ) 0= l , . . . , n ) .

Then (p) = (A^-), and hence Xj - p e Z for every j == 1,.. . , n. Moreover we
obtain

A , - p ^ 0 ( . 7 = l , . . . , n )

from (J)p and Lemma 3.2. This is the case (ii) of Theorem 1.3 in §1.2, then
by the argument there we know that the monodromy group of P{\,p) is
finite. If \k - p < 0, then in a similar manner we obtain

^ • - P < 0 ( j = l , . . . , n ) .

This is the case (i) of Theorem 1.3, and again the monodromy group is
finite.

Finally we assume that one of

A i , . . . , A n , p

belongs to Z. Then in a similar argument we know that all belongs to Z :

\j, p e Z ( j = l , . . . , n ) .
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Suppose that (I)p holds for infinitely many p. If p < 0, for any sufficiently
large p we have

Rp(p) = P + P '
Then (I)p gives

(3.7) Rp(\,)^p-^p 0=l , . . . ,n ) .

If Xj ^ 0, Rp(\j) = Aj, which contradicts to (3.7) when p is large enough.
Hence \j < 0, Rp(\j) =P+ \j, and we have

\j ^ p

for every j. Now by (J)p we have

n

^(p+A^)<(n- l ) (p+p)+p ,
j=i

and hence
n

^A,<(n-l)p.
j=i

Thus we have obtained the case (iii) of Theorem 1.3, which implies that
the monodromy group of P(A,p) is finite. If p ^ 0, for sufficiently large p
we have

Rp(p) = p.

By (J)p we have

Rp{>j)^P ( .7=l , . . . ,n ) , ^Rp(Xj)<(n-l)p^p.
j=i

Let £ be the number of negative A/s. Then

f>p(A,)=^+f>,,
j=i j=i

and hence

^+^A^- < (n-l)p+p.
j==i
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Since this inequality holds for sufficiently large p, we obtain £ ^ 1. When
i = 0, every \j is non-negative, and from (I)p we obtain

Xj ^ p (j=l,...,n).

This is the case (iv) of Theorem 1.3, and then the monodromy group is
finite. When (, == 1, let A, < 0. Then \k ^ 0 for any k -^ z, and by (I)p we
have

A f c ^ p (k^i).

Again by (J)p we obtain

^A,<(n-l)p,
j=i

so that we have obtained the case (v) of Theorem 1.3. Hence the mon-
odromy group is finite also in this case. Supposing that ( I I ) p holds for
infinitely many p, similarly we obtain the cases (vi), (vii) and (viii) of The-
orem 1.3, and hence also in this case the monodromy group of P(A,p) is
finite.

On the exponents A i , . . . , An,p, we have examined all cases, and in
any case the monodromy group of the Pochhammer system P(A, p} is finite.
This completes the proof. Q.e.d.

In the above proof we have shown that, if the Pochhammer system
P(A, p) is non-generic and has finite monodromy group, one of the eight
conditions (i) to (viii) in Theorem 1.3 holds. Thus, together with the proof
of sufficiency given after Theorem 1.3, we have completed the proof of
Theorem 1.3.
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