Nous considérons le groupe de monodromie
We consider the monodromy group
@article{AIF_1994__44_3_767_0, author = {Haraoka, Yoshishige}, title = {Finite monodromy of {Pochhammer} equation}, journal = {Annales de l'Institut Fourier}, pages = {767--810}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {3}, year = {1994}, doi = {10.5802/aif.1417}, zbl = {0812.33006}, mrnumber = {96c:33018}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1417/} }
TY - JOUR AU - Haraoka, Yoshishige TI - Finite monodromy of Pochhammer equation JO - Annales de l'Institut Fourier PY - 1994 SP - 767 EP - 810 VL - 44 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1417/ DO - 10.5802/aif.1417 LA - en ID - AIF_1994__44_3_767_0 ER -
%0 Journal Article %A Haraoka, Yoshishige %T Finite monodromy of Pochhammer equation %J Annales de l'Institut Fourier %D 1994 %P 767-810 %V 44 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1417/ %R 10.5802/aif.1417 %G en %F AIF_1994__44_3_767_0
Haraoka, Yoshishige. Finite monodromy of Pochhammer equation. Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 767-810. doi : 10.5802/aif.1417. https://aif.centre-mersenne.org/articles/10.5802/aif.1417/
[1] Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. | MR | Zbl
, ,[2] Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. | MR | Zbl
, ,[3] Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990).
,[4] Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. | Zbl
,[5] Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. | MR | Zbl
,[6] Ordinary differential equations, New York, 1926.
,[7] From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. | Zbl
, , , ,[8] Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. | Numdam | MR | Zbl
,[9] Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. | MR | Zbl
,[10] Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. | JFM
,[11] Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese).
,[12] On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987.
,[13] On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. | MR | Zbl
,[14] On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. | MR | Zbl
, ,[15] A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. | MR | Zbl
, ,[16] Modern Analysis, Cambridge, 1927.
, ,[17] On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. | MR | Zbl
,[18] On an irreducibility condition for hypergeometric systems, preprint. | Zbl
,- Kodaira fibrations and beyond: methods for moduli theory, Japanese Journal of Mathematics, Volume 12 (2017) no. 2, p. 91 | DOI:10.1007/s11537-017-1569-x
- Vector bundles on curves coming from variation of Hodge structures, International Journal of Mathematics, Volume 27 (2016) no. 07, p. 1640001 | DOI:10.1142/s0129167x16400012
- MONODROMY REPRESENTATIONS ASSOCIATED WITH THE GAUSS HYPERGEOMETRIC FUNCTION USING INTEGRALS OF A MULTIVALUED FUNCTION, Kyushu Journal of Mathematics, Volume 66 (2012) no. 1, p. 35 | DOI:10.2206/kyushujm.66.35
- Riemann–Hilbert Problem, Encyclopedia of Mathematical Physics (2006), p. 436 | DOI:10.1016/b0-12-512666-2/00286-8
- Construction of rigid local systems and integral representations of their sections, Mathematische Nachrichten, Volume 279 (2006) no. 3, p. 255 | DOI:10.1002/mana.200310360
- The Deligne–Simpson problem—a survey, Journal of Algebra, Volume 281 (2004) no. 1, p. 83 | DOI:10.1016/j.jalgebra.2004.07.013
- Integral Representations of Solutions of Differential Equations Free from Accessory Parameters, Advances in Mathematics, Volume 169 (2002) no. 2, p. 187 | DOI:10.1006/aima.2001.2060
- Grothendieck's conjecture for the Risch equation y′ = ay + b, Indagationes Mathematicae, Volume 12 (2001) no. 1, p. 113 | DOI:10.1016/s0019-3577(01)80009-4
- An Algorithm of Katz and its Application to the Inverse Galois Problem, Journal of Symbolic Computation, Volume 30 (2000) no. 6, p. 761 | DOI:10.1006/jsco.2000.0382
- On Rigid Tuples in Linear Groups of Odd Dimension, Journal of Algebra, Volume 222 (1999) no. 2, p. 550 | DOI:10.1006/jabr.1999.8032
- Monodromy Groups of Systems of Total Differential Equations of Two Variables, SIAM Journal on Mathematical Analysis, Volume 28 (1997) no. 5, p. 1227 | DOI:10.1137/s0036141096296875
- Canonical Forms of Differential Equations Free from Accessory Parameters, SIAM Journal on Mathematical Analysis, Volume 25 (1994) no. 4, p. 1203 | DOI:10.1137/s0036141092231082
- Monodromy Representations of Systems of Differential Equations Free from Accessory Parameters, SIAM Journal on Mathematical Analysis, Volume 25 (1994) no. 6, p. 1595 | DOI:10.1137/s0036141092242228
Cité par 13 documents. Sources : Crossref