Finite monodromy of Pochhammer equation
Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 767-810.

Nous considérons le groupe de monodromie G de l’équation différentielle de Pochhammer 𝒫. Soit 𝒫p l’équation réduite modulo un nombre premier p. Alors, on montre que G est fini si et seulement si 𝒫p admet un système fondamental de solutions polynomiales pour presque tous les nombres premiers.

We consider the monodromy group G of the Pochhammer differential equation 𝒫. Let 𝒫p be the reduce equation modulo a prime p. Then we show that G is finite if and only if 𝒫p has a full set of polynomial solutions for almost all primes p.

@article{AIF_1994__44_3_767_0,
     author = {Haraoka, Yoshishige},
     title = {Finite monodromy of {Pochhammer} equation},
     journal = {Annales de l'Institut Fourier},
     pages = {767--810},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {44},
     number = {3},
     year = {1994},
     doi = {10.5802/aif.1417},
     zbl = {0812.33006},
     mrnumber = {96c:33018},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1417/}
}
TY  - JOUR
AU  - Haraoka, Yoshishige
TI  - Finite monodromy of Pochhammer equation
JO  - Annales de l'Institut Fourier
PY  - 1994
SP  - 767
EP  - 810
VL  - 44
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1417/
DO  - 10.5802/aif.1417
LA  - en
ID  - AIF_1994__44_3_767_0
ER  - 
%0 Journal Article
%A Haraoka, Yoshishige
%T Finite monodromy of Pochhammer equation
%J Annales de l'Institut Fourier
%D 1994
%P 767-810
%V 44
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1417/
%R 10.5802/aif.1417
%G en
%F AIF_1994__44_3_767_0
Haraoka, Yoshishige. Finite monodromy of Pochhammer equation. Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 767-810. doi : 10.5802/aif.1417. https://aif.centre-mersenne.org/articles/10.5802/aif.1417/

[1] F. Beukers, G. Heckman, Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. | MR | Zbl

[2] D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. | MR | Zbl

[3] Y. Haraoka, Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990).

[4] Y. Haraoka, Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. | Zbl

[5] T. Honda, Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. | MR | Zbl

[6] E.L. Ince, Ordinary differential equations, New York, 1926.

[7] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. | Zbl

[8] N. Katz, Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. | Numdam | MR | Zbl

[9] N. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. | MR | Zbl

[10] E. Landau, Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. | JFM

[11] N. Misaki, Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese).

[12] K. Okubo, On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987.

[13] T. Sasai, On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. | MR | Zbl

[14] T. Sasai, S. Tsuchiya, On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. | MR | Zbl

[15] K. Takano, E. Bannai, A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. | MR | Zbl

[16] E. Whittaker, G. Watson, Modern Analysis, Cambridge, 1927.

[17] T. Yokoyama, On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. | MR | Zbl

[18] T. Yokoyama, On an irreducibility condition for hypergeometric systems, preprint. | Zbl

  • Catanese, Fabrizio Kodaira fibrations and beyond: methods for moduli theory, Japanese Journal of Mathematics, Volume 12 (2017) no. 2, p. 91 | DOI:10.1007/s11537-017-1569-x
  • Catanese, Fabrizio; Dettweiler, Michael Vector bundles on curves coming from variation of Hodge structures, International Journal of Mathematics, Volume 27 (2016) no. 07, p. 1640001 | DOI:10.1142/s0129167x16400012
  • MIMACHI, Katsuhisa; SASAKI, Takeshi MONODROMY REPRESENTATIONS ASSOCIATED WITH THE GAUSS HYPERGEOMETRIC FUNCTION USING INTEGRALS OF A MULTIVALUED FUNCTION, Kyushu Journal of Mathematics, Volume 66 (2012) no. 1, p. 35 | DOI:10.2206/kyushujm.66.35
  • Kostov, V.P. Riemann–Hilbert Problem, Encyclopedia of Mathematical Physics (2006), p. 436 | DOI:10.1016/b0-12-512666-2/00286-8
  • Haraoka, Yoshishige; Yokoyama, Toshiaki Construction of rigid local systems and integral representations of their sections, Mathematische Nachrichten, Volume 279 (2006) no. 3, p. 255 | DOI:10.1002/mana.200310360
  • Kostov, Vladimir Petrov The Deligne–Simpson problem—a survey, Journal of Algebra, Volume 281 (2004) no. 1, p. 83 | DOI:10.1016/j.jalgebra.2004.07.013
  • Haraoka, Yoshishige Integral Representations of Solutions of Differential Equations Free from Accessory Parameters, Advances in Mathematics, Volume 169 (2002) no. 2, p. 187 | DOI:10.1006/aima.2001.2060
  • van der Put, Marius Grothendieck's conjecture for the Risch equation y′ = ay + b, Indagationes Mathematicae, Volume 12 (2001) no. 1, p. 113 | DOI:10.1016/s0019-3577(01)80009-4
  • Dettweiler, Michael; Reiter, Stefan An Algorithm of Katz and its Application to the Inverse Galois Problem, Journal of Symbolic Computation, Volume 30 (2000) no. 6, p. 761 | DOI:10.1006/jsco.2000.0382
  • Dettweiler, Michael; Reiter, Stefan On Rigid Tuples in Linear Groups of Odd Dimension, Journal of Algebra, Volume 222 (1999) no. 2, p. 550 | DOI:10.1006/jabr.1999.8032
  • Yokoyama, Toshiaki Monodromy Groups of Systems of Total Differential Equations of Two Variables, SIAM Journal on Mathematical Analysis, Volume 28 (1997) no. 5, p. 1227 | DOI:10.1137/s0036141096296875
  • Haraoka, Yoshishige Canonical Forms of Differential Equations Free from Accessory Parameters, SIAM Journal on Mathematical Analysis, Volume 25 (1994) no. 4, p. 1203 | DOI:10.1137/s0036141092231082
  • Haraoka, Yoshishige Monodromy Representations of Systems of Differential Equations Free from Accessory Parameters, SIAM Journal on Mathematical Analysis, Volume 25 (1994) no. 6, p. 1595 | DOI:10.1137/s0036141092242228

Cité par 13 documents. Sources : Crossref