An effective Matsusaka big theorem
Annales de l'Institut Fourier, Volume 43 (1993) no. 5, pp. 1387-1405.
@article{AIF_1993__43_5_1387_0,
     author = {Siu, Yum-Tong},
     title = {An effective {Matsusaka} big theorem},
     journal = {Annales de l'Institut Fourier},
     pages = {1387--1405},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {43},
     number = {5},
     year = {1993},
     doi = {10.5802/aif.1378},
     zbl = {0803.32017},
     mrnumber = {95f:32035},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1378/}
}
TY  - JOUR
TI  - An effective Matsusaka big theorem
JO  - Annales de l'Institut Fourier
PY  - 1993
DA  - 1993///
SP  - 1387
EP  - 1405
VL  - 43
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1378/
UR  - https://zbmath.org/?q=an%3A0803.32017
UR  - https://www.ams.org/mathscinet-getitem?mr=95f:32035
UR  - https://doi.org/10.5802/aif.1378
DO  - 10.5802/aif.1378
LA  - en
ID  - AIF_1993__43_5_1387_0
ER  - 
%0 Journal Article
%T An effective Matsusaka big theorem
%J Annales de l'Institut Fourier
%D 1993
%P 1387-1405
%V 43
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1378
%R 10.5802/aif.1378
%G en
%F AIF_1993__43_5_1387_0
Siu, Yum-Tong. An effective Matsusaka big theorem. Annales de l'Institut Fourier, Volume 43 (1993) no. 5, pp. 1387-1405. doi : 10.5802/aif.1378. https://aif.centre-mersenne.org/articles/10.5802/aif.1378/

[D1] J.-P. Demailly, Champs magnétiques et inégalités de Morse pour la d" cohomologie, Compte-Rendus Acad. Sci, Série I, 301 (1985), 119-122 and Ann. Inst. Fourier, 35-4 (1985), 189-229. | Numdam | Zbl: 0565.58017

[D2] J.-P. Demailly, A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. | MR: 94d:14007 | Zbl: 0783.32013

[EL] L. Ein and R. Lazarsfeld, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, preprint, 1992.

[F] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Proceedings of the 1985 Sendai Conference on Algebraic Geometry, Advanced Studies in Pure Mathematics, 10 (1987), 167-178. | MR: 89d:14006 | Zbl: 0659.14002

[K] J. Kollár, Effective base point freeness, Math. Ann., to appear. | Zbl: 0818.14002

[KM] J. Kollár and T. Matsusaka, Riemann-Roch type inequalities, Amer. J. Math., 105 (1983), 229-252. | MR: 85c:14007 | Zbl: 0538.14006

[L] P. Lelong, Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, 1969. | Zbl: 0195.11604

[LM] D. Lieberman and D. Mumford, Matsusaka's Big Theorem (Algebraic Geometry, Arcata 1974), Proceedings of Symposia in Pure Math., 29 (1975), 513-530. | MR: 52 #399 | Zbl: 0321.14004

[M1] T. Matsusaka, On canonically polarized varieties II, Amer. J. Math., 92 (1970), 283-292. | MR: 41 #8415b | Zbl: 0195.22802

[M2] T. Matsusaka, Polarized varieties with a given Hilbert polynomial, Amer. J. Math., 94 (1972), 1027-1077. | MR: 49 #2729 | Zbl: 0256.14004

[N] A. Nadel, Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. U.S.A., 86 (1989), 7299-7300 and Ann. of Math., 132 (1990), 549-596. | Zbl: 0711.53056

[S] Y.-T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53-156. | MR: 50 #5003 | Zbl: 0289.32003

Cited by Sources: