On the contraction of the discrete series of SU(1,1)
Annales de l'Institut Fourier, Volume 43 (1993) no. 2, pp. 551-567.

It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group 𝒫 1,1 =SO(1,1) s 2 can be obtained via contraction from the discrete series of representations of SU(1,1).

Nous montrons, en utilisant des idées provenant de la méthode des orbites, que toute représentation massive et d’énergie positive du groupe de Poincaré 𝒫 1,1 =SO(1,1) s 2 peut être obtenue par contraction de la série discrète de SU(1,1).

@article{AIF_1993__43_2_551_0,
     author = {Cishahayo, C. and Bi\`evre, S. De},
     title = {On the contraction of the discrete series of $SU(1,1)$},
     journal = {Annales de l'Institut Fourier},
     pages = {551--567},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {43},
     number = {2},
     year = {1993},
     doi = {10.5802/aif.1346},
     zbl = {0793.22005},
     mrnumber = {94e:22023},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1346/}
}
TY  - JOUR
TI  - On the contraction of the discrete series of $SU(1,1)$
JO  - Annales de l'Institut Fourier
PY  - 1993
DA  - 1993///
SP  - 551
EP  - 567
VL  - 43
IS  - 2
PB  - Imprimerie Louis-Jean
PP  - Gap
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1346/
UR  - https://zbmath.org/?q=an%3A0793.22005
UR  - https://www.ams.org/mathscinet-getitem?mr=94e:22023
UR  - https://doi.org/10.5802/aif.1346
DO  - 10.5802/aif.1346
LA  - en
ID  - AIF_1993__43_2_551_0
ER  - 
%0 Journal Article
%T On the contraction of the discrete series of $SU(1,1)$
%J Annales de l'Institut Fourier
%D 1993
%P 551-567
%V 43
%N 2
%I Imprimerie Louis-Jean
%C Gap
%U https://doi.org/10.5802/aif.1346
%R 10.5802/aif.1346
%G en
%F AIF_1993__43_2_551_0
Cishahayo, C.; Bièvre, S. De. On the contraction of the discrete series of $SU(1,1)$. Annales de l'Institut Fourier, Volume 43 (1993) no. 2, pp. 551-567. doi : 10.5802/aif.1346. https://aif.centre-mersenne.org/articles/10.5802/aif.1346/

[AAG] S. T. Ali, J. P. Antoine, and J.P. Gazeau, De Sitter to Poincaré contraction and relativistic coherent states, Ann. Inst. H. Poincaré, 52 (1990), 83-111. | Numdam | MR: 91e:22027 | Zbl: 0706.22018

[DBE] S. De Bièvre and A. El Gradechi, Quantum mechanics and coherent states on the Anti-de Sitter spacetime and their Poincaré contraction, Ann. Inst. H. Poincaré, 57 (1992), 403-428. | Numdam | MR: 93m:81053 | Zbl: 0770.53048

[D] A. H. Dooley, Contractions of Lie groups and applications to analysis, in : Topics in modern harmonic analysis, Vol.I, 483-515 (Instituto Nazionale di Alta Matematica Francesco SEVERI, Roma 1983). | MR: 86e:22015 | Zbl: 0551.22006

[DR1] A. H. Dooley and J. W. Rice, Contractions of rotation groups and their representations, Math. Proc. Camb. Phil. Soc., 94 (1983), 509-517. | MR: 87a:22022 | Zbl: 0532.22014

[DR2] A. H. Dooley and J. W. Rice, On contractions of semisimple Lie groups, Trans. Amer. Math. Soc., 289 (1985), 185-202. | MR: 86g:22019 | Zbl: 0546.22017

[E] A. El Gradechi, Théories classique et quantique sur l'espace-temps Anti-de Sitter et leurs limites à courbure nulle, Thèse de Doctorat, Université Paris 7, décembre 1991.

[EDB] A. El Gradechi and S. De Bièvre, Phase space quantum mechanics on the Anti-de Sitter spacetime and its Poincaré contraction, preprint 1992. | Zbl: 0810.53070

[Fr] C. Fronsdal, Elementary particles in a curved space, Rev. Mod. Phys., 37 (1965), 221-224. | MR: 31 #3193 | Zbl: 0125.45305

[GH] J. P. Gazeau and V. Hussin, Poincaré Contraction of SU (1, 1) Fock-Bargmann Structure, J. of Physics A, Math. Gen., 25 (1992), 1549-1573. | MR: 93k:81128 | Zbl: 0824.22018

[Gi] R. Gilmore, Lie groups, Lie algebras and some of their Applications, Wiley, New York, 1974. | Zbl: 0279.22001

[IW] E. Inönü and E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U. S., 39 (1953), 510-524. | MR: 14,1061c | Zbl: 0050.02601

[Ki] A. Kirillov, Eléments de la Théorie des Représentations, Editions Mir, Moscou, 1974.

[Ko] B. Kostant, Quantization and unitary representations, Lecture Notes in Math., 170, Springer Verlag, Berlin, 1970. | MR: 45 #3638 | Zbl: 0223.53028

[LM] P. Libermann and C. M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company, 1987. | MR: 88c:58016 | Zbl: 0643.53002

[Ma] G. W. Mackey, On the analogy between semisimple Lie groups and certain related semi-direct product groups, in : Lie Groups and Their Representations, I. M. Gelfand (Ed.), 339-364 (Akadémiai Kiadó, Budapest 1975). | MR: 53 #13478 | Zbl: 0324.22006

[MN] J. Mickelsson and J. Niederle, Contractions of representations of the Sitter groups, Commun. Math. Phys., 27 (1972), 167-180. | MR: 46 #8611 | Zbl: 0236.22021

[Pe] A. Perelomov, Generalized Coherent States and their Applications, Springer Verlag, Berlin, 1986. | MR: 87m:22035 | Zbl: 0605.22013

[R] P. Renouard, Variétés Symplectiques et Quantification, Thèse Orsay, 1969.

[Ra] J.H. Rawnsley, Representations of a semi-direct product by quantization, Math. Proc. Camb. Phil. Soc., 78 (1975), 345-350. | MR: 52 #8341 | Zbl: 0313.22014

[Sa] J. Saletan, Contraction of Lie groups, J. Math. Phys., 2 (1961), 1-21. | MR: 23 #B259 | Zbl: 0098.25804

[Wo] N.M.J. Woodhouse, Geometric Quantization, Clarendon Press, Oxford, 1980. | MR: 84j:58058 | Zbl: 0458.58003

Cited by Sources: