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ON THE CONTRACTION
OF THE DISCRETE SERIES OF SU (1,1)

by C. CISHAHAYO ̂  and S. DE BIEVRE

1. Introduction.

It is well known that the Lie algebra of the 1+1-dimensional Poincare
group P1'1 = SO{1,1) (g)s R2 is a contraction of the su(l, 1) Lie-algebra.
We show in this paper in which sense the positive energy massive repre-
sentations of 'P1'1 are contractions of the discrete series of representations
of SU(1,1) (Theorem 7.4).

Contractions of Lie algebras were first studied systematically in [IW].
More details and examples can be found in [Gi]. The basic idea comes from
physics. When a physical theory, invariant under some Lie group, contains a
parameter, then very often the theory obtained for the limiting value of the
parameter has a different invariance group. Galilean physics, for example,
is obtained in the limit when the speed of light is taken to infinity in a
Poincare invariant theory. Similarly, physical theories on flat Minkowski
spacetime ought to be obtainable from their curved spacetime versions in
the limit when the curvature is taken to zero [Fr]. In [AAG], [DBE] and
[GH] various aspects of this phenomenon were studied for the case when the
curved spacetime is the two-dimensional Anti-de Sitter(AdS) spacetime.
The identity component of the isometry group of the AdS spacetime
is 50o(2,l) ^ SU(1,1)/Z2. To massive particles on this spacetime are
associated discrete series representations of 6'0o(2,l) (see [DBE] and
refererences therein). On the other hand, massive particles on Minkowski
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spacetime are described by positive energy massive representations of the
Poincare group P1'1. It is then natural to ask in which precise mathematical
sense the latter are obtainable from the former in the limit of zero curvature.
This question is answered in this paper.

We remark that the contraction of Lie algebras and of their represen-
tations has attracted considerable attention in the literature. On the other
hand, the behaviour of the unitary irreducible representations of their as-
sociated Lie groups under contractions has not been studied as thoroughly.
Some notable exceptions are the works of Mickelsson and Niederle [MN]
and of Dooley and Rice [D] [DR1] [DR2]. In [MN], the first proper defi-
nition of the contraction of unitary representations of Lie groups appears.
The contraction of the principal series of 5'0o(7^ 1)to representations of the
Euclidean group E(n) and of the Poincare group 'p71"1'1 is then established.
Here E{n) is a contraction of S0o(n^ 1) along S0(n) and P72"1'1 is a con-
traction ofSOo(n, 1) along S0(n-l, 1). In [DR1] and [DR2] the irreducible
representations of a Cartan motion group K (S)s V associated with a Rie-
mannian symmetric pair (G, K) are obtained as the limit of the irreducible
unitary principal series representations of G. Here K <^s V is QL contraction
of G along Jf, and this work partially generalizes the results of [MN]. In
[D] the same results are reviewed in the light of the Kostant-Kirillov orbit
method. It is suggested there that this viewpoint might provide a useful
framework for studying contractions of group representations by exploit-
ing the geometry of the coadjoint orbits. This program is realized in the
present paper to study the contraction of the discrete series of SU{1^ 1) to
positive energy massive representations of 'P1'1 = 5'0(1,1) 0s R2. It will
be seen that the models of the representations that are provided by the
orbit method, together with the Kahlerian character of the corresponding
SU(1^ 1) orbits are the key ingredients needed to establish our results.

The rest of this paper is organized as follows. In section 2, we recall the
essentials on the contraction of Lie algebras and Lie groups, and describe
the contraction of 577(1, 1) to P1'1. In section 3 we give a precise definition
of the contraction of representations which generalizes the one used in [MN]
and [DR2]. In section 4 we briefly describe the discrete series of 577(1, 1)
using the method of orbits. In section 5 we show how the contraction
deforms the orbits of SU{1,1) in 5^(1,1)* associated with the discrete series
to orbits of 'P1'1 associated with its positive energy massive representations.
In section 6 we describe the latter, using again the method of orbits. Finally,
in section 7 we show how the geometric picture provided in sections 4-6
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permits a very natural formulation and proof of our central result, Theorem
7.4.

To conclude, we remark that P1'1 is the motion group associated with
the semi simple pseudo-Riemannian symmetric pair (50o(2,1),50(1,1)).
In addition, the discrete series representations we contract here are obtained
via holomorphic induction from the corresponding maximally compact
subgroup 50(2). This suggests a generalization of our results which is
partially exploited for the contraction of 50o(3,2) to P3'1 in [E] and [EDB].

2. The contraction of 577(1,1) to P1'1.

The definition of the contraction of Lie algebras goes back to [IW].
A coordinate independent definition was given in [Sa] and [D]. We follow
essentially the treatment of [D].

DEFINITION 2.1. — Let 0i = (V,[- , -] i ) and G-z = (^h^) be two
Lie algebras constructed on the same vector space V. We say 02 is a
contraction ofQi if there exists a family <I>^, K € (0,1], of invertible linear
transformations of V so that

(2.1) lim^1^. • x^ = [x,y}^ Va;, y G V.
K,—^U

One can also say that Gi is a deformation of Q^. A special case, of
particular interest for us, is the Inomi-Wigner contraction, or contraction
along a subalgebra. Suppose there exists a subalgebra JC of Q\ and a vector
space complement Vc to /C in V, i.e.

(2.2a) V = 1C © Vc

so that

(2.26) [ /C,K]iCVc.

Note that in applications Vc is almost never a subalgebra of Gi' Then we
can construct, ^x^y € V,

(^^a [x^y\2 = [xk,yk]i + [xk,yc}i + [xc,yk}i,
where

(2.36) x == Xk + a-c; Xk € /C; Xc C Vc,
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and similarly for y e V. The bracket [., ̂  is a Lie bracket and we write
^2 = (^h']2) for the corresponding Lie algebra, which is a semi-direct
sum of (/C, [-, -]i) and the abelian Lie algebra Vc.

Now introduce

(2-4) ^K(x) = xk + KXc, K e (0, l].
It is then easily verified that fe is a contraction of Q^. One says that Q^
is a contraction of <?i along 1C. Note that, restricted to /C, both brackets
coincide.

Suppose now that Gi is a Lie group with Qi as its Lie algebra and K
a subgroup of Gi having /C as its Lie algebra. We can then construct the
semi-direct product group

(2-5) G^=K^sV^

where K acts on Vc with the adjoint representation. Then it is clear that
<?2 is the Lie algebra of <?2 and one can construct [D]

n^:^0,y,-^Gi

(2.6a) (A;, zQ -> (exp^ /w)fc.

It is not hard to verify that

W TJL=^.
In this sense we can say G^ is a contraction of Gi along K.

We now turn to the case of interest in this paper and show that the
Poincare group P1'1 = 50(1,1) (g)^ R2 is a contraction of 5[/(1,1) along
one of its hyperbolic subgroups. The elements g of SU(1,1) can be written
as

^ 9=^ ^) > H2 - 1/?12 = 1,^/3 ec

and a basis for its Lie algebra su(l, 1) ̂  R3 is

OK\ » i f1 ° \ V° ^ 1 /O -A
^ ^'HO -l^615--^! O^60^^^ o )

with

(^S) [650, eoi] = -615 ; [e5o, 615] = eoi; [615, eoi] = -650 .
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The compact subgroup is generated by 650, while eoi and 615 generate
a hyperbolic subgroup. The unusual indexation comes from the physical
interpretation based on the homomorphism 577(1,1) —^ S0o(2,1)[DBE].
We take /C = span{eoi} and Vc = span{e5o, 615} so that

(2.10) [e5o, ei5]2 = 0 ; [e5o, eoi]2 = -615 ; [ei5, <°oi]2 = -650

which is easily verified to be the Poincare Lie algebra.

3. Contracting representations.

Having defined the contraction of Lie algebras and Lie groups, we
can now study the behaviour of their representations under the contrac-
tion procedure. Let H be a Hilbert space, carrier space of an unitary rep-
resentation U of G2. Let J be a subset of (0,1] accumulating at 0 and
let (7^,L^),At e J, be a family of unitary representations of G\. Let
{P^,/^ € J} be a family of dense subsets of "H and {I^,n € J} a fam-
ily of linear inject ive maps

(3.1) I ^ - . V ^ c H - ^ H ^ K e J .

We then have the following definition :

DEFINITION 3.2. — The representation (H.U^G^) is a contraction of
the family (^,^,Gi) if there exists a dense subset V of H and 1^ as
above so that \/ (j) e T>, \/g € G^

(3.2a) (i) V/^ G J sufficiently small, ̂  € V^ andU^Il^g))!^ e I^{V^

(3.2&) (ii) ̂ \\I^U^(g))I^-U{g^\\n = 0.

This definition is close to the one of [MN], but less restrictive. In
[MN], the authors require the existence of a family of isometries

(3.3) A, : H, -^ A,(^J c U

which play the role of our J^1. It is then required that U^A^(1-i^) = H.
These requirements are too strong for our purposes, as we explain in the
remark after Lemma 7.1.

We also wish to stress the fact that the same family (7^, L^, Gi) can
contract to many different (T^L^Ga), even if all representations involved
are irreducible. In fact, this is the rule rather than the exception as a study
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of the known examples shows. It will also be the case in the situation
studied in this paper.

4. The discrete series of 577(1,1).

We give a short description of the discrete series of the representations
of 577(1,1), in a formulation convenient for our purposes.

First, let D = [z e C \ \z\ < 1} be the open unit disc and let for each
Eo

/ A 1 \ „.,-, dz A dz
( ) o^=-2z£^_^.

The pair (£),o^J is a symplectic manifold and the action

SU(1,1) x D -^ D

(4.2) Q,,.)-^.^^
/3z+a

leaves <^ invariant. In fact, this action is transitive and is globally and
strongly Hamiltonian [LM] and its generators are the hamiltonian vector
fields associated to the functions

(4.3a) ^(.,,)=^_12),

(4-36) ^M--^————

(̂  L^{z,z) = -iEo———— .
1 — \z\2

The corresponding moment map L : D -> su(l, 1)*, denned by

(4-4) L{z) • e^ = L^(z) ,

maps D into a coadjoint orbit in su(l, 1)*. The map L is a diffeomorphism
of D onto one sheet of the two-sheeted hyperboloid in su(l, 1)* ^ R3,
determined by

(4.5) (Lgo)2 - (£i5)2 - (£oi)2 = E2, , Lso > £'0,
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where we used the notation L^Q e^ + 1/15 e^ + -LOI e^i € s'u(l, 1)*, with
e^ the dual basis of e^ and L^ € R. We shall use the notation Og for
the surface determined in (4.5). The orbit method of Kostant-Kirillov [Ki]
[Ko] [Wo] associates to each of these coadjoint orbits a representation of
the discrete series of 577(1, 1), provided £'0 is a half integer greater or equal
than 1. Remembering that 50o(2,1) ^ 677(1, l)/^ these representations
restrict to representations of 5'0o(2,l), provided £'o is an integer. When
explicitly executing the Kostant-Kirillov construction, the representation
Hilbert spaces HEQ are realized as closed reproducing kernel subspaces of
L2^,^) defined as follows [DBE] :

(^^^e^^if f^^eL 2 ^,^)
(4.66) (ii) 3f analytic on^,so that^J) = (1 - l^l2)^0 j\z).

Condition (4.66) corresponds to a polarisation which in this case is
Kahlerian and positive, whence the emergence of the analytic functions.
Explicitly, the unitary irreducible representation of SU(1^ 1) on "HEQ is
(4.7)

(UE,W){Z^= (r̂ ^p) o(-^+")-2^(<rl•^FT-^)•
The link of this representation with the more usual formulation in terms of
Bargman spaces of analytic functions [Pe] is readily made via the unitary
transformation

V: L^D^E^-L^D^l-^2)2^^)

(4.8) ^(1-H2)-^.

The advantage of the formulation in (4.6)-(4.7) in the context of the
contraction of 5'[7(1,1) to 'P1'1 will become clear in sections 6-7. We now
first describe the behaviour of the orbits 0^ under contraction.

HlQ

5. The contraction of coadjoint orbits.

As announced in the introduction, we wish to establish that each mas-
sive, positive energy representation ofP151 can be obtained via contraction
from the discrete series of 5[/(1,1). We expect EQ —> oo as K —> 0. We have
seen that each (T-^o? ̂ o) is associated to a coadjoint orbit of 5[/(1,1). It
is then natural to ask how the latter behave under contraction. We shall see
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that they approximate in some sense coadjoint orbits of?1'1. This leads one
to conjecture that the discrete series contracts to the unitary irreducible
representation of P1'1 corresponding to those orbits. This is indeed what
we prove in section 7.

Recall that we identified both C(P1-1) and £{SU(1,1)) = su(l,l)
with IR3 by using the basis 650, e^, eoi. Similarly, we can identify both
duals C(P^Y and su(l, 1)* with H3* by using the dual basis e*^. We shall
write ^50^o+^i5^5+Loie*i for elements of su(l, 1)* and He^+Pe^-^-
Ke^ for elements of £(P1'1)* ^ R3*. The coadjoint action of both groups
on IR3* is then readily computed and one finds the following orbits.

For SU(1,1), they are subsets of the surfaces

(5.1) (W-^is)2-^!)2-^^.

If r > 0, this corresponds to a two-sheeted hyperboloid, each sheet an
^^(1,1) orbit. If r < 0, one obtains a one-sheeted hyperboloid. Finally,
for r = 0, one obtains three orbits : two cones and the origin. Similarly, the
coadjoint action of P1'1 foliates IR3* into orbits, determined by

(5.2) H ^ - P ^ r ^ r e H .

For r ^ 0, this surface splits into two hyperbolic cylinders; for r = 0 into
five disjoint orbits : four half planes (H = ±P, H > 0, H < 0) and the
origin.

Consider the orbit O171 given by

(5.3) H^-P^m^H^m

for some m > 0. Let (3^ = me^o and consider the following family of
submanifolds of R3* :

(^l)*(Ad^^,)(^(^))=Q^

(5-4) • -(^ro^.
They are given by

(5.5a) y^-2^2-^-2?2-^2^^2

v K )
or

(5.5&) H2-P•2-H2K2=m2H>0.
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Comparing (5.56) to (5.3), one sees that the Qm,K "approximate" 0^
as /c tends to zero. A more precise statement of this observation can be
found in [DBE]. The method of orbits associates to each of the SU(\^ 1)
orbits Of (with m half integer ) a representation (7^, [/m,5T/(l, 1))
of the discrete series described in the previous section, and to each O1^
a unitary irreducible representation (T^l/771,?1'1) of P151 [R]. We shall
describe the latter in the next section and prove in section 7 that the
(nin.,Uin.,SU(l,l)) contract to (T^,^,?151).

6. The massive positive energy representations ofP1'1.

The representation (W771, [/m, P1'1) associated via the Kirillov-Kostant
method of orbits to O171 [R] [Ra] [DBE] can be written down in several ways.
However, since O171 does not admit a positive invariant Kahler polarization,
the Hilbert space H^ cannot be realized as a subspace of L^O771,^771),
where (^m is the symplectic two-form on O171 (for details, see for example
[DBE]). We choose here a realization of (^m, U^) that is particularly well-
suited for our purposes, and which is essentially contained in [DBE]. We
shall describe H171 as a space of functions on a subset of O771 which arises
naturally.

Note indeed that the sets Qm,^ defined in (5.5&) have a common
intersection £m for all K > 0, given by

(6.1) K = 0, H > 0, H2 - P2 = m2.

Note that £rn is the orbit of f3rn under the Ad* action of K = 50(1,1),
which explains the existence of a diffeomorphism between % ( — l , l ) c D and
fm:

(6.2) T = (^,1)* o L : z(-l, 1) C D -^ £m C Qm^

as is readily verified upon noting that Loi(^,^) = 0 if z = i\ (see (4.3)-
(4.4)). Moreover, Vfc € K = S0(l, 1),V^ e i(-l, 1), we have

(6.3) T(fc • z) = Ad^T(^),

so that T intertwines the action of K on i(—l,l) C D and on Ern- It is
convenient to introduce a coordinate r on Ern by

(6.4a) H = m cosh r,
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(6-4^) P=msinhr,

and one verifies that

(6-5) ^0+^5-Ad:^^^.

The 50(1, l)-invariant measure on £m is then dr. On the other hand, from
(6.2) and (4.3) one sees that

(6.60) TW="f±Q^^^

so that

(6.66) A=tanh^.

It was shown in [DBE] that applying the orbit method to O771 leads to a
realization of H^ as

(6.7) U- - L\£^ dr) ̂  L2 [(-1,1), ̂ ^

where the last equivalence follows from (6.6). The representation of P151 =
50(l,l)(g),R2 on U^ is then
(6.8)

(^(a;exp^oi)^)(A) = e-1^^——^^ ̂ ^t+sinh^
^Vcosh^+Asinh^'

7. Contraction of the discrete series.

We show in this section that the family (H^.UHL.SU {!,!)), with
m half integer, contracts to (T^,^771,?1'1). For dial purpose, we need
to construct appropriate maps ^ from ^m to 7^ (see (3.1)). We shall
actually first construct their inverses.

Recall from section 4 that the Hm. are subspaces L^D,^). More-
over, in view of (4.66), each ^ e Uj^ is uniquely determined by its restric-
tion to %(-!, 1). Hence we can define the injective map

(7.la) i^ : ̂  e U^ -^ (i^) e ̂ ((-l, i))
by

(7•lb) (^-^)(A)=^A).
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Remark that I^^ has an analytic extension to D. We are interested in
^^(Zm^nL2^-! ,!) ,2^).

\ 1 — A /

LEMMA 7.1.

(i) If/t' <^then,V^ cV^

(ii) VnersHi-A^^eP,,

(iii) U ^isdensein L2 f(-l,l), -2dA-^ .
/<>o \ I — A 2 /

Remark — (i) says that the V^ grow as K shrinks, which will be
important in the sequel. It is clear that |j V^ can not be equal to

K>0

L [ (-1? ̂  ̂ _\2 } since a11 Cements of V^ are analytic functions.

Proof. — Let </) e P^. It follows from (7.16) and (4.66) that there
exists an analytic function / on D so that

(^ W ^) = (i - M2)^) e L2^,^^).

(7.26) (6) ^A)=( i -A2)^ / (zA) .

Define now on D the function ^/ by

^(^(i-M^i+z2)?-^).

We show now ^/ C ^^. Clearly, -0' is of the form (4.66) for EQ = m. It
remain to check that ^ ' G L^D.a;^). For that purpose, note that

' 1 -M2X^- -/ !_ |,^|2\^^--.

^(-) = (rT^) ^)'
so that

l̂ )!-!1!^!!'7"!^)!-

But, since m - m ^ 0, and 1 - |^|2 ^ |l + z\ for z € £», the result
/r n/

follows. We conclude ^' e 7^^ and one sees readily that (J^V) = ^
Hence (f) € P^/.
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(ii) This follows directly from the observation that ̂  = (l-l^l2)^71,
n e N are in Hz^. They are the eigenfunctions of the generator of the
compact subgroup. Clearly

(I^n)W = (1 - A2)" A"(z)" 6 £2 f(-l, 1), 2d—}.
\ 1 — A /

(iii) It follows from (i) and (ii) that (1 - A2) A71 is in |j V^ for all
K>0

n € N. Those polynomials are clearly dense in L2 ((-1,1), ———^ ). D

We now turn to the limit in (3.2). First we consider for (fc, v) e P1'1 =
K ^ s V ,

(7.3) n.(.,.)=exp^^..=(^ ^).

Using (2.8) one sees that for

(7.4a) v = a°e5o + a^e^ (a°,a1) € R2,

and

(7.46) A;=expy?eoi,

we have

(7.5a) a(/€) = cosh ̂  + -/< (a° cosh ̂  - a1 sinh ̂ ) + 0(/^2),

(7.56) (3(K) = -i sinh j - j (a1 cosh J - a° sinh J) + O(^).

Hence

(7.6a) a(^)2 + /3(/02 = 1 + ma° + 0(/,2),

(7.66) a(^)^(^) + a(^)/3(^) = -/ta1 + 0(^2).

For later use we introduce

(7-7" ^-iH^I-1-2-^0^
^ .̂̂ ^y.-....̂ ).
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Note that all errors depend on (k,v) e P1'1, and are easily controlled
uniformily on compacta.

Now let (f) e V = [j V^. Then of) e ̂  for all ^ sufficiently small
^>i J

(Lemma 7.1 (i)). Hence, for such K

(7.8) (^)(.)=(i-|,|2)-^^L
(1+z2)^

(see (7.2)). Therefore, using (4.7) and (7.1) we find after some calculation

(7.9) (I^U^(Tl^v))I^)(\)

= [a(K)2 + (3(K)2] ~" f 1 ~ A2 1 T A, I j ^)A-/^) \
^ ) ^ / J [l-2iB^)\-A^)\^ (p[ '-i^)X+a^))'

where A(/^) and B(/^) are defined in (7.7). Using (7.5)-(7.7) it is then very
easy to see that

(7.10) ^(I^U^(H^v)I^)W = (^(^exp^eoi^XA)

VA € (-1,1). In order to prove that the family (H^, ̂ ,577(1,1))
contracts to (n^.U^.P1^) we have to prove (7.10) holds" also'as a strong
limit in U. For that purpose we first need control over the prefactor in
(7.9). We introduce the notation

[ 1 \ 2 -|
(7.11) yjA)= ——————A_____v 7 l^zB^A-A^A2] '

LEMMA 7.2. — Let Z,(A) = [a(/,)2 + W2}-^ [Y^X)}^. Then there
exists a constant C so that VA C (-1,1), for all K sufficiently small

(7-i2) |^(A)|<a

Proof. — We first recall from (4.7) and (7.1) that Z^(A) can be
rewritten as

f 1 A2 1^(7.13) Z,(A) = { ——————————1 A ________ I
[ [1 + (11̂ , v)-1 • iXY^-^iX + a(/,)]2 J '

The expression in the denominator is for each K a polynomial of second
order in A :

(7.14) P(^ A) EE [1 + (IUA, v)-1. iX^-^iX + a(/.)]2.
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Since, for |A| < 1 we know [-/3(^)zA + Q:(^)] ^ 0, the two zeros A±(At) of
P(/^, A) satisfy

(7.15) l=\Il^v)-l•i\±(K)\.

Now since the unit circle is an orbit of 577(1,1), we can conclude

(7.16) |A±M|=1.

A simple calculation using (7.7) yields

(7.17) A±(/^) = ±1 - m[a1 T a0} + 0(^2).

Now, since |o;(^)2 + /3(/^)2 > |a(^)|2 - |/3(^)|2 = 1, and since for K
sufficiently small (7.7a) implies that |A(/s;)| > 1 - C"/^2, for some C' > 0,
we have

(7.18) |Z,(A)| < C ( 1"A)(~17A) „
(A+(^) -A) (A- ( /^ ) -A)

for some C > 0. For A C - . . , the expression in the right hand side of
[_ 2 2 ]

(7.18) is bounded uniformly. For A C (^ l) , (1 - A) ^ |A+(/^) - A)| and
\4" 7

for A c ( - 1 — ) , I - I - A I < |A-(^)-A) since |A±(^)| = 1 . The result
\ ^/

then follows easily from (7.18). D

Remark. — The precise information on the location of A± that we
used is crucial in obtaining (7.12). Indeed, if in (7.11) we only knew the
coefficients A(^) and B(/t) behaved as in (7.7), then (7.12) could not be
guaranteed to hold.

DEFINITION 7.3. —

V=UeV= [J^CL2^-!^ 2d-\^6>0
' ir̂ l \ 1 - A /

so that 0'(A) = ^ ^ has a bounded analytic extension to I)}.

Note that V is dense in U since (1 - A^A71 e P,Vn > 0. We can now
formulate the central result of this paper.
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THEOREM 7.4. — The representation (•H"1, U"1, P1'1) is a contraction
of the family (7^, U^, SU(1,1)), with m ̂  1 a half-integer

Ki

Proof. — We have to verify (3.2) is satisfied. We take V as defined
in Definition 7.3 and 1^ is the inverse of J^1 in (7.1) defined on V^ =

(ImJ^1)nL2 [ (-1,1), YZ~\2 ) • Now each ^ m v belong to some P^ and,
by Lemma 7.1 (f) C 2^, V/^ > KQ. This takes care of the first statement in
Definition 3.2(i). To prove the second part of Definition 3.2(i), we need to
show that I^U^Il^k.v)!^ with 1^ defined in (7.1), belongs to Urn •
We prove this simultaneously with (3.26) as follows. For (f) e P, write

\(I^U^(TI^v))I^)W - (^(a^KA)!
^ |y.(A)1?-^)2 + y^)2]-^-^! - AY(-^)zA + a(K))-261

J^-^IUfc^)-1^)) ^(-^fc-^zA)) ^

1 [1 + (n,(/c, ̂ )-i • zA)2]^ [1 + {k-1 • (zA))2]^ J+(n,( /c,^)-i .zA)2]^ [ l+ (A ; - i . ( z

+ ^(A)-6^^)2 + ̂ )2]-("-^^^A^^(-^^^ + a(.))--

(7.19) -exp-^im^^^^+im^a^ll^-^-^zA)) .

The first term in the right hand side of (7.19) is bounded by C(l - \2)6 in
view of Lemma 7.2 and the assumptions on (f). Since in addition it converges
to zero pointwise, the Lebesgue dominated convergence theorem assures

it converges in L2 U-l, 1), ^ _ ). Similarly the second term in (7.19)

converges pointwise to zero and is bounded by C\(j){-i{k~1 • %A)) | which is
in ̂ ((-1,1),^). Hence

\\I^U^(]l^v))I^-Um(a^)(|>\\H^O

which proves both (3.26) and the second part of Definition 3.2(i). D

Remark. — The definition 3.2 refers to an a priori arbitrary choice of
the family 1^. Our analysis of the geometry of the coadjoint orbits in section
5 shows that the choice in (7.1) arises naturally. On the other hand, the
crucial injectivity of I^1 follows from the Kahlerian character of the orbits
0^ which is also responsible for the fact that the Hm. are Hilbert subspaces
of ^(O^, ̂ ). The limiting orbit 0^ of P1'1 is no longer Kahlerian which
explains why U^ is no longer realized as a Hilbert subspace of L^O771).
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This remark is at the origin of most of the technical difficulties encountered
in this paper, as already pointed out in [DBE]. There it was proven that
one can identify the 0~^_ with O^; it was then shown in which way the
JiaL^ seen as subspaces of T-t1^ = L^O771), leave T-^as K tends to zero.

Acknowledgments. — The authors thank J.P. Gazeau and J. Renaud
for helpful conversations on the subject matter of this paper.
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