Soit un domaine strictement pseudoconvexe borné dans , et soit un diviseur positif de d’aire finie. On montre l’existence d’une fonction bornée dont est l’ensemble des zéros de . Ceci généralise un résultat de B. Berndtsson dans le cas où est la boule unité de .
Let be a bounded strictly pseudoconvex domain in and let be a positive divisor of with finite area. We prove that there exists a bounded holomorphic function such that is the zero set of . This result has previously been obtained by Berndtsson in the case where is the unit ball in .
@article{AIF_1993__43_2_437_0, author = {Arlebrink, Jim}, title = {Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$}, journal = {Annales de l'Institut Fourier}, pages = {437--458}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {2}, year = {1993}, doi = {10.5802/aif.1339}, zbl = {0782.32013}, mrnumber = {94f:32021}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1339/} }
TY - JOUR AU - Arlebrink, Jim TI - Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$ JO - Annales de l'Institut Fourier PY - 1993 SP - 437 EP - 458 VL - 43 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1339/ DO - 10.5802/aif.1339 LA - en ID - AIF_1993__43_2_437_0 ER -
%0 Journal Article %A Arlebrink, Jim %T Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$ %J Annales de l'Institut Fourier %D 1993 %P 437-458 %V 43 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1339/ %R 10.5802/aif.1339 %G en %F AIF_1993__43_2_437_0
Arlebrink, Jim. Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$. Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 437-458. doi : 10.5802/aif.1339. https://aif.centre-mersenne.org/articles/10.5802/aif.1339/
[AC] On Varopoulos' theorem about zero sets of Hp-functions, Bull. Sc. Math., 114 (1990), 463-484. | MR | Zbl
, ,[Ar] Zeros of bounded holomorphic functions in C2, Preprint Göteborg (1989).
,[Be] Integral formulas for the ∂∂-equation and zeros of bounded holomorphic functions in the unit ball, Math. Ann., 249 (1980), 163-176. | MR | Zbl
,[BA] Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier, 32-3 (1982), 91-100. | Numdam | MR | Zbl
, ,[Fo] Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569. | MR | Zbl
,[He1] Solutions with estimates of the H. Levy and Poincaré-Lelong equations. Constructions of functions of the Nevanlinna class with prescribed zeros in strictly pseudoconvex domains, Soviet Math. Dokl., 16 (1976), 3-13.
,[He2] The Lewy equation and analysis on pseudoconvex manifolds, Russian Math., Surveys, 32-3 (1977), 59-130. | MR | Zbl
,[KS] The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J., 45 (1978), 197-224. | MR | Zbl
, ,[Le1] Fonctionnelles analytiques et fonctions entières (n variables), Presses Univ. Montréal, Montréal, 1968. | MR | Zbl
,[Le2] Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, Paris-London-New York, 1968. | MR | Zbl
,[Sk1] Diviseurs d'aire bornée dans la boule de C2: réflexions sur un article de B. Berndtsson, Sem. Lelong-Skoda 1978-79, LNM 822, Springer-Verlag, Berlin-Heidelberg-New York, 1980. | Zbl
,[Sk2] Valeurs au bord pour les solutions de l'opérateur et caractérisation de zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, 104 (1976), 225-299. | Numdam | MR | Zbl
,[Ra] Holomorphic functions and integral representations in several complex variables, Springer-Verlag, Berlin-Heidelberg-New-York, 1986. | MR | Zbl
,[Va] Zeros of Hp-functions in several variables, Pacific J. Math., 88 (1980), 189-246. | Zbl
,Cité par Sources :